
Master Thesis

STATISTICAL ANALYSIS OF ANDROID APPS: A STUDY

OF LIFECYCLE DEVELOPMENT PATTERNS

Prepared By Supervisor

Noura Hoshieah Dr. Samer Zein

This Thesis was submitted in partial fulfillment of the requirements for the
Master’s Degree in Software Engineering From the Faculty of Information

Technology and Engineering

March 2018

i

Statistical Analysis of Android Apps: A Study of Lifecycle Development Patterns. By Noura
Hoshieah

Approved by the thesis committee:

Dr. Samer Zein, Birzeit University

Dr. Majdi Mafarja, Birzeit University

Dr. Nariman Ammar, Birzeit University

Date Approved:

ii

Declaration of Authorship

I, Noura Hoshieah, declare that this thesis titled, “Statistical Analysis of Android
Apps: A Study of Lifecycle Development Patterns” and the work presented in it are
our own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given and
with the exception of such quotations, this thesis is entirely our own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by ourselves jointly with others, I have
made clear exactly what was done by others and what I have contributed our-
selves.

Signed: Date:

iii

Abstract

Statistical Analysis of Android Apps: A Study of Lifecycle Development Patterns
By Noura Hoshieah

Building robust Android apps is a non-trivial task that requires skilled developers to
understand the different peculiarities of such apps. However, among the Android
developer community, a large fraction is considered to be novice and inexperienced
developers. One of the main peculiarities in Android app development is a lifecycle
model. A developer needs to have a deep understanding of the different lifecycle
states and callback methods that an Android activity can go through during its run-
time. These callback methods are called by the system whenever the activity changes
its state. The developer on one hand needs to override these callback methods cor-
rectly to avoid app memory leaks and data loss. Statistical analysis of software appli-
cations provides actionable insights and helps to understand how applications were
really built. Although there have been lots of studies focusing on analyzing of An-
droid apps in the areas of testing, quality, design, privacy, and security; there are no
studies focus on lifecycle development practices thus far.

In this thesis, 842 open-sourced Android apps containing 5577 activities were ana-
lyzed to explore and understand how Android developers actually comply with best
practices regarding the activity lifecycle model. A tool named Statistical Analysis of
Android Lifecycle (SAALC) was developed that is capable to analyze Android ac-
tivities and extracting valuable information about lifecycle callback methods usage.
The generated results show, which callback methods are mostly implemented, what
they are implementing for, and the nature of code they contain. More specifically,
the results show an incorrect implementation of the callback methods and incorrect
acquiring and releasing of a system’s resources. The findings suggest that a relatively
large fraction of Android developers who didn’t well understand the lifecycle model.
This research also compares the results obtained with best practices and state-of-the-
art.

 الملخص

ددورة حياة تطبيقات الأندرويأنماط تحليل

عداد : نورا حوشيةإ

خصائص يعُد إنشاء تطبيقات الأندرويد المتينة مهمة غير عادية تتطلب من المطورين المحترفين فهم ال
كبير من المختلفة لمثل هذه التطبيقات. ومع ذلك ، من بين مجتمع مطوّري برامج الأندرويد ، هنالك جزء

ي نموذج هتطبيق الأندرويد المطورين المبتدئين وغير المحترفين. واحدة من الخصائص الرئيسية في تطوير
ي يمكن أن دورة الحياة. يحتاج المطور إلى فهم عميق لحالات دورة الحياة المختلفة وطرق رد الاتصال الت

النظام يمر بها نشاط الأندرويد خلال وقت التشغيل. بحيث يتم استدعاء أساليب رد الاتصال هذه بواسطة
ب تسرب إلى تعزيز أساليب رد الاتصال هذه بشكل صحيح لتجنعندما يغير النشاط حالته. و يحتاج المطور

تنفيذ ويساعد ذاكرة التطبيق وفقدان البيانات. يوفر التحليل الإحصائي لتطبيقات البرامج إحصاءات قابلة لل
لى تحليل على فهم كيفية بناء التطبيقات بالفعل. وعلى الرغم من وجود الكثير من الدراسات التي تركز ع

ات تركز لأندرويد في مجالات الاختبار والجودة والتصميم والخصوصية والأمان ؛ لا توجد دراستطبيقات ا
 على ممارسات تطوير دورة الحياة حتى الآن.

 5577من تطبيقات الأندرويد المفتوحة المصدر التي تحتوي على 842في هذه الأطروحة ، تم تحليل
ج دورة حياة رامج الأندرويد بأفضل الممارسات المتعلقة بنموذنشاطاً لاستكشاف وفهم كيفية التزام مطوري ب

تحليل النشاط. وتم تطوير أداة تسمى التحليل الإحصائي لدورة حياة الأندرويد)سالس(وهي قادرة على
أنشطة الأندرويد واستخلاص معلومات قيمة عن كيفية استخدام أساليب رد الاتصال في دورة حياة

الب ، ولماذا ئج التي تم الحصول عليها ، أي أساليب رد الاتصال تم استخدامها في الغالتطبيق. تُظهر النتا
تائج أن هنالك استخدمت ، وما طبيعة التعليمات البرمجية التي تحتوي عليها. وبشكل أكثر تحديداً ، تظهر الن

ل على موارد د الإتصال تم استخدامها بشكل غير صحيح وأيضاً عدم الحصور نسبة كبيرة من أساليب
رامج النظام والإفراج عنها بشكل صحيح. وتشير النتائج أيضا إلى وجود جزء كبير نسبياً من مطوري ب

ً النت ائج التي تم الأندرويد الذين لم يفهموا نموذج دورة الحياة بشكل جيد. وكما يقارن هذا البحث أيضا
 في تطبيقات الأندرويد. الحصول عليها مع أفضل الممارسات وأحدث التقنيات المستخدمة

iv

v

Acknowledgement

Thanks first to ALLAH for his guidance that without I will not achieve what I have
done up to this moment.

I am deeply and forever indebted to my parents and my family for their love, support
and encouragement throughout my entire life. I am also very grateful to my brothers
and sisters.

I would like to express my sincere gratitude to my advisor Dr. Samer Zein for his
continuous support of my master thesis. He was very patience, motivated and always
provided his excellent guidance in helping me to write the thesis.

Thanks to the examination committee for their valuable remarks, especially Dr. Majdi
Mafarja and Dr. Nariman Ammar.

Finally, I would like to thank my best Friends for their encouragement and support.

vi

Contents

Declaration of Authorship ii

Abstract iii

Arabic Abstract iv

Acknowledgement v

Dedication xv

1 Introduction 1

1.1 Introduction and Motivation . 1

1.2 Thesis Contribution . 4

1.3 Aims and Objectives . 5

1.3.1 Aims . 5

1.3.2 Research Objectives . 5

1.4 Overview of This Thesis . 6

2 Background 7

2.1 Android Platform . 7

2.2 Android’s Activity Model Lifecycle . 9

3 Literature Review 18

3.1 Introduction . 19

3.2 Analyzing of Android Source Code . 19

3.3 App Lifecycle Challenges . 20

3.4 Analyzing for Privacy and Security Patterns 26

3.4.1 Permissions Patterns . 29

3.4.2 Permissions and APIs Patterns 34

vii

3.4.3 Data Flow and APIs Patterns . 37

3.4.4 Control Flow Patterns . 41

3.5 Analyzing for Design Patterns . 44

3.6 Analyzing for Quality Patterns . 48

3.7 Analyzing Other Patterns . 49

3.8 Highlight the Gap of knowledge . 53

3.9 Conclusion . 54

4 Research Methodology 56

4.1 The Research Methodology Flow . 56

4.2 Data Collection . 58

4.3 Data Analysis . 63

4.3.1 SAALC Architecture and Implementation 63

4.3.1.1 State Analyzer Algorithm 67

4.3.1.2 Resource Analyzer Algorithm 67

4.3.2 SAALC Implementation . 69

4.3.3 SAALC Testing . 69

5 Results 70

5.1 Usage of Callback Methods . 70

5.1.1 Percentages of the usage of callback methods over the dataset . 70

5.1.2 Percentages of the usage of callback methods over the app cat-
egories . 72

5.2 Usage of System’s Resources . 73

5.2.1 Occurrence of the system’s resources 74

5.2.1.1 Percentages of system’s resources occurrence over the
dataset . 74

5.2.1.2 Percentages of system’s resources occurrence over the
apps categories . 75

5.2.2 Managing system’s resources . 77

5.2.2.1 Percentages of acquiring system’s resources 77

5.2.2.2 Percentages of releasing system’s resources 79

5.2.2.3 Correctly/Wrongly acquired and released system’s re-
sources over the dataset 81

viii

5.2.2.4 Correctly/Wrongly acquired and released system’s re-
sources over the apps categories 85

5.3 Nature of Code Implemented Inside Callback Methods 136

6 Discussion 140

6.1 Utilizing Lifecycle Callback Methods . 140

6.2 Utilizing Android System’s Resources 143

6.3 Utilizing Nature of Code Implemented inside Callback Methods . . . 144

7 Conclusions 146

7.1 Conclusion . 146

7.2 Difficulties and Obstacles . 147

7.3 Threat to validity . 148

7.4 Future Work . 149

A 150

A.1 Repository information . 150

A.2 Literature review studies . 151

A.3 SAALC Class Diagram . 152

References 153

ix

List of Figures

2.1 Android platform architecture . 8

2.2 Android activity lifecycle model [8] . 13

2.3 Overriding callback methods inside an activity 16

3.1 Android activity rebuild lifecycle model [8] 22

4.1 Methodology flow diagram . 58

4.2 Data collection methodology . 59

4.3 Distribution of the dataset over 17 categories in F-Droid: (A) Num-
ber of F-Driod apps(#App). (B) Number of downloaded apps(#App
Downloaded). (C) Number of collected activities (#Activities) 62

4.4 Structure diagram of SAALC . 64

4.5 Common coding styles . 66

5.1 Buble Chart: Distribution of callback methods over the dataset 71

5.2 Heat-Map: Distribution of callback methods over the apps categories . 73

5.3 Column Chart: Distribution of system’s resources over the dataset . . 75

5.4 Column-Map: Distribution of system’s resources over the apps cate-
gories . 77

5.5 Column Chart: Distribution of acquired system’s resources 78

5.6 Column Chart: Distribution of released system’s resources 80

5.7 Column Chart: Distribution of correctly/wrongly acquired system’s
resources . 82

5.8 Column Chart: Distribution of correctly/wrongly released system’s re-
sources . 83

5.9 Bar Chart: Distribution of acquired Camera resource over the app Cat-
egories . 88

5.10 Column Chart: Distribution of correctly/wrongly acquired Camera re-
source over the app categories . 89

x

5.11 Bar Chart: Distribution of released Camera resource over the app cate-
gories . 92

5.12 Column Chart: Distribution of correctly/wrongly released Camera re-
source over the app categories . 93

5.13 Bar Chart: Distribution of acquired Database resource over the app
categories . 96

5.14 Column Chart: Distribution of correctly/wrongly acquired Database
resource over the app categories . 97

5.15 Bar Chart: Distribution of released Database resource over the app cat-
egories . 100

5.16 Column Chart: Distribution of correctly/wrongly released Database
resource over the app categories . 101

5.17 Bar Chart: Distribution of acquired Sensor resource over the app cate-
gories . 104

5.18 Column Chart: Distribution of correctly/wrongly acquired Sensor re-
source over the app categories . 105

5.19 Bar Chart: Distribution of released Sensor resource over the app cate-
gories . 108

5.20 Column Chart: Distribution of correctly/wrongly released Sensor re-
source over the app categories . 109

5.21 Bar Chart: Distribution of acquired GPS resource over the app categories111

5.22 Column Chart: Distribution of correctly/wrongly acquired GPS re-
source over the app categories . 112

5.23 Bar Char: Distribution of released GPS resource over the app categories 114

5.24 Column Chart: Distribution of correctly/wrongly released GPS resource
over the app categories . 115

5.25 Bar Chart: Distribution of acquired Input resource over the app cate-
gories . 118

5.26 Column Chart: Distribution of correctly/wrongly acquired Input re-
source over the app categories . 119

5.27 Bar Chart: Distribution of acquired Bluetooth resource over the app
categories . 123

5.28 Column Chart: Distribution of correctly/wrongly acquired Bluetooth
resource over the app categories . 124

5.29 Bar chart: Distribution of released Audio resource over the app categories129

5.30 Column Chart: Distribution of correctly/wrongly released Audio re-
source over the app Categories . 130

xi

5.31 Nature of analysis . 138

A.1 The class diagram for SAALC tool . 152

xii

List of Tables

4.1 Distribution of the dataset over the app categories 61

5.1 Distribution of callback methods over the dataset 71

5.2 Distribution of callback methods over the apps categories 72

5.3 Distribution of system’s resources over the dataset 74

5.4 Distribution of system’s resources over the apps categories 76

5.5 Distribution of acquired system’s resources 78

5.6 Distribution of released system’s resources 80

5.7 Distribution of correctly/wrongly acquired and released system’s re-
sources . 82

5.8 Distribution of acquired Camera system’s resource 87

5.9 Distribution of correctly/wrongly acquired Camera system’s resource 89

5.10 Distribution of released Camera system’s resource 91

5.11 Distribution of correctly/wrongly released Camera system’s resource . 93

5.12 Distribution of acquired Database system’s resource 96

5.13 Distribution of correctly/wrongly acquired Database system’s resource 97

5.14 Distribution of released Database system’s resource 99

5.15 Distribution of correctly/wrongly released Database system’s resource 101

5.16 Distribution of acquired Sensor system’s resource 103

5.17 Distribution of correctly/wrongly acquired Sensor system’s resource . 105

5.18 Distribution of released Sensor system’s resource 107

5.19 Distribution of correctly/wrongly released Sensor system’s resource . 108

5.20 Distribution of acquired GPS system’s resource 111

5.21 Distribution of correctly/wrongly acquired GPS system’s resource . . 112

5.22 Distribution of released GPS system’s resource 114

5.23 Distribution of correctly/wrongly released GPS system’s resource . . . 115

5.24 Distribution of acquired Input system’s resource 117

xiii

5.25 Distribution of correctly/wrongly acquired Input system’s resource . . 118

5.26 Distribution of released Input system’s resource 120

5.27 Distribution of acquired Bluetooth system’s resource 122

5.28 Distribution of correctly/wrongly acquired Bluetooth system’s resource 123

5.29 Distribution of released Bluetooth system’s resource 125

5.30 Distribution of acquired Audio system’s resource 127

5.31 Distribution of released Audio system’s resource 128

5.32 Distribution of correctly/wrongly released Audio system’s resource . 129

5.33 Distribution of acquired Network system’s resource 132

5.34 Distribution of released Network system’s resource 133

5.35 Distribution of acquired USB system’s resource 135

5.36 Distribution of released USB system’s resource 136

5.37 Nature of code analysis . 138

A.1 Resources repository information from Android documentation [17] . 150

xiv

List of Abbreviations

OS Operating System
UI User Interface
SAALC Statistical Analysis of Android Lifecycle
DVM Dalvik Virtual Machine
SDK Software Development Kit
APK Android Package Kit
ALCI Android Lifecycle Inspector
SAAF Static Android Analysis Framework
ASEF Android Security Evaluation Framework
TPR True Positive Ratio
TNR True Negative Ratio
VSM Vector Space Model
CDG Dependency Graph Component
BG Behavior Graph
FPR False Positive Rate
ACUP API call Usage Pattern
AST Abstract Syntax Tree
DI Difference index
F-Droid Free and Open Source Software applications for the Android
CSV Comma Separated Values
BNS Bi-Normal Separation
MI Mutual Information
AHC Agglomerative Hierarchical Clustering
CPPM Contrast Permission Pattern Mining algorithm
SDG System Dependency Graph

xv

Dedication

To my parents who have dedicated their precious lives for our success
To my lovely my brothers and sisters

To my brothers and sisters
To my Supervisor Dr Samer Zein

To my Friends and Colleagues

1

Chapter 1

Introduction

1.1 Introduction and Motivation

Mobile applications (apps hereafter) usage has increased exponentially with millions

of apps being available at the online stores [1]. Nowadays, users rely on mobile apps

to deliver their daily tasks. Indeed, mobile apps cover various fields such as social,

business, health, productivity and gaming to mention a few [2]. Moreover, mobile

devices offer the same functionality as the PC through wireless, web browsers, video,

and audio. At the same time, the mobile app development is not a trivial task and

has its own challenges [3].

Android is a major vendor and one of the most popular mobile open source Operating

System (OS) in the mobile app market [4]. The Industrial analysts expect that the

Android platform will remain the dominant mobile vendor for the upcoming years.

Google Play is the main online store providing Android apps. Since Android first

release in 2008, developers have been heavily contributing in developing new apps

that facilitate various user needs. As a result, in April 2017, the number of available

Android apps has exceeded 2.8 millions [1, 5]. Further, the number of worldwide

downloaded Android apps from Google play was estimated in billions in 2016 to

2

2017 [5]. Accordingly, the complexities of mobile apps increase to fulfill a variety of

functionalities and features.

The mobile app development is typically different than other traditional web and

desktop paradigms. Developers are facing a new set of challenges such as developing

apps for different platforms (iOS and Android), and handling the issues of OS and

hardware fragmentation, and lifecycle conformance [6, 7, 8, 9]. Even though much

research has been directed to address these challenges, little research has been done

in the area of lifecycle conformance.

When developing for Android, activities represent User Interface (UI) and each activ-

ity goes through different states during its lifecycle. These states are running, paused,

stopped and shutdown. Each activity makes transitions between these states due to

some events, such as receiving an incoming call, by calling a specific callback method

[6]. Android developers need to have an appropriate understanding of the life cycle

model in order to develop apps that function correctly [8, 9, 3]. Google documenta-

tion provides narrative information about the lifecycle model to assist developers in

building robust apps [8]. However, a large fraction of Android developers is known

to be novices and amateurs who may not follow the life cycle model and will end up

with unreliable and faulty apps [3]. Additionally, there are little automated testing

tools available for Android that enables to check the correctness of the app lifecycle

[3].

This thesis aims to explore how android app developers actually utilize the lifecycle

callback methods. More specifically, the aim to analyze Android open-source apps

to reveal how these apps are built in terms of lifecycle callback methods and the

utilization of system resources such as Camera, GPS, Sensors, etc. Analyzing An-

droid app’s source code is one of the most recent topics in the statistical analysis field

[10] and provides actionable insight about how these apps are developed [11]. For

3

instance, it helps increase the quality of the code and improve reliability and perfor-

mance of the software [11, 12]. Another example is rule mining [13]. Rule mining

aims to extract hidden rules from existing project in order to improve new develop-

ment projects [13]. Further, rule mining has been used in automated defect detection

for complementing the compiler work and this is done through analyzing the source

code to find the most common bugs [10, 13]. Indeed, analyzing the source code gives

more insights and helps the research community and the software industry to un-

derstand how developers actually code their apps. In other cases, it can be useful to

understand the architecture of the app and consequently to reduce the development

time and programming effort [11, 13]. Other benefits of analyzing source codes in-

clude identification and elimination of security vulnerabilities in software [14], and

provide statistical measures about the code such as numbers of methods, attributes,

parameters, children, line of codes, depth of inheritance, complexity, couples and co-

herence [12].

Although there are a lot of studies in analyzing Android source code insights and

patterns in different fields such as testing; quality; design; privacy and security; there

has been no studies focusing on analyzing Android source code for lifecycle develop-

ment. To address this need, an exploratory study was conducted to analyze Android

source code. The main aim of our study is to explore how real Android develop-

ers develop their apps in terms of lifecycle callback methods. To achieve this, 842

open-source Android apps containing 5577 activities was analyzed. These apps were

downloaded from F-Droid repository. Our dataset includes different apps with vary-

ing code sizes and from different categories such as Gaming, Navigation, Internet,

Multimedia, etc. A statistical analysis tool called SAALC was built which is able to

analyze and extract all data related to activity lifecycle callback methods. The result-

ing statistics reveal the usage of callback methods and where system’s resources such

4

as Camera, Bluetooth, GPS, etc., are acquired and released among other important

information. Also, the nature of code implemented in these callback methods was

analyzed to understand for what they are used.

More specifically, the results show that onCreate() callback method is mostly utilized

(92%) among all activities. On the other hand, the onRestart() and onStart() callback

methods are about (1%) and (6%) respectively. Further, the onDestroy() and onStop()

have (14%) and (6%) respectively. Also, the findings showed that the average percent-

ages of wrongly acquired and released system resources are about (20%) and (8%).

Such results enable us to understand more how Android developers utilize lifecycle

callback methods.

1.2 Thesis Contribution

Analyzing Android’s source code has been implemented to highlight the gap about

the importance of the activity lifecycle in mobile apps. Our methodology of analyz-

ing source code lifecycle patterns was applied to a real dataset of Android apps to

generate statistics. To perform the analysis and gain results, an analysis tool called

SAALC developed. SAALC was used to analyze 5577 Android activities extracted

from 842 open source Android apps.

Accordingly, the focus was on exploring how Android developers utilize activity life-

cycle callback methods, manage system’s resources and the nature of code inside

callback methods. Moreover, detailed comparisons were performed between differ-

ent app categories to draw actionable insight and provide useful information about

the most occurrence category. However, identified if any improvements or alterations

are required to aid developers.

5

1.3 Aims and Objectives

1.3.1 Aims

Several analysis studies have been performed in the Android source code. How-

ever, these studies focused on finding code patterns in privacy, security, design, test-

ing, energy, localization and prioritizing. Based on the literature review, there are no

study focused on analysis Android lifecycle, except one study that focused on anal-

ysis Android for testing lifecycle conformance [3]. Consequently, this research aims

to narrow this research gap and conduct a quantitative research. This research uses a

statistical analysis of the Android source code. Analyzing Android activities source

code helps to extract lifecycle useful patterns. The resulting patterns were used to

provide general statistics and draw actionable insight about lifecycle utilization of

community. Apart from that, Android developers can use our findings to gain in-

sights into the Android app development. Further, researchers can use our findings

to provide support for developers to overcome these inconstancy between Android

model and documentations.

1.3.2 Research Objectives

Based on above aims, the following research objectives have been formulated:

• To develop a tool for analyzing Android activity lifecycle files.

• To generate and analyze statistics about callback methods utilization.

• To generate and analyze statistics about acquiring and releasing of system’s re-

sources during the lifecycle of Android apps.

6

• To generate and analyze statistics about the nature of code inside callback meth-

ods.

Based on above objectives, the following research questions (RQs) are formulated:

RQ1: To what extent Android developers utilize the lifecycle callback methods in

developing mobile apps?.

RQ2: Did Android developer correctly acquire and release the Android system’s

resources?.

RQ3: What is the nature of code implemented inside onPause(), onStop, and on-

Destroy() callback methods?.

1.4 Overview of This Thesis

The remainder of this thesis was structured as follows. Chapter 2 presented a back-

ground. It showed Android platform, model lifecycle, and its challenges. In chapter 3

presented a literature review and discussed the pertinent literature and sources avail-

able in order to produce the thesis methodology. Then, chapter 4 showed the thesis

methodology. It proposes a quantitative research. In chapter 5 showed the results of

the thesis methodology using our development tool on the collected Android dataset.

Chapter 6 presented a discussion of our results. Finally, chapter 7 provided a small

conclusion about the research so far and the findings, and also showed threat to va-

lidity and future work.

7

Chapter 2

Background

This chapter presented a background on Android OS. It was arranged as follows.

Section 2.1 showed an introduction about Android platform. Section 2.2 showed An-

droid lifecycle model and callback methods.

2.1 Android Platform

Android is a Linux based Operating System (OS) which was designed and developed

for mobile devices by the Open Handset Alliance in 2007 [15]. Android is an open

source which deployed under the Apache License [8]. This helps developers in the

development of the Android OS and its model lifecycle information.

In Android, the Linux kernel interacts with the device hardware, whereas the app

APIs run after the kernel. Android contains a stack’s layered software from app to

API to OS to Linux kernel as shown in Figure 2.1. The Linux kernel called a hardware

abstraction layer. It provides a process for memory management, security, and net-

work models [16]. Further, There are some libraries run on the layer over the kernel

such as SQLite, Webkit, and SSL to provide system functionalities.

8

All API assigned to the app framework layer to provide access to the device hard-

ware. Each app on Android act as an interface to the APIs inside the API layer. It

runs on Dalvik Virtual Machine (DVM) under a unique UNIX UID. These apps as-

sign in the top layer [16]. Some of these apps are preinstallation as phone and home

while the others were downloaded from Google play market to provide the user ex-

tend functionality [16].

FIGURE 2.1: Android platform architecture

Android app is written in JAVA language [16]. The app codes compile using the

Android Software Development Kit (SDK) tool which developed by Google into An-

droid packages called Android Package Kit (APK) file. SDK also provides a testing

environment using emulator features to allow developers test functionalities of apps

using virtual environment [15]. However, when a user installs an app, Android de-

vice will install the APK apps file.

9

The Android packaged APK file contains a class .dex which a single file that holds a

bytecode to be interpreted by DVM and other files in held in res/ and assets/ fold-

ers [16]. Also, it consists the Android manifest file at the root of the Android project

directory. The Android manifest file is an XML format file type. Each app contains

a set of components were declared In the manifest file. The Android system checks

whether these components exist in the manifest file before running apps. These fol-

lowing components are:

• Activities: it represents a graphical UI of an app.

• Services: it is running in the background.

• Broadcast receivers.

• Content providers.

• App permissions.

An Android app consists of a set of activity component. Thus, Android provides

some features concern to its activity’s lifecycle. In this study, the main focus was

on the Android activity lifecycle. However, activity’s lifecycle was very extensively

introduced in the next section.

2.2 Android’s Activity Model Lifecycle

App’s lifecycle refers to multiple concepts [8]. In this research, it does not refer to apps

software engineering lifecycle which includes (requirement, design, coding, testing).

Instead, App’s lifecycle refers to multiple states and transitions. However, mobile

app’s lifecycle differs than other platform app lifecycle, such as the desktop or web.

In Android mobile platform, each app contains sub-functionalities which represent

a set of activities [8, 9]. Moreover, each activity has its own lifecycle. The activity’s

10

lifecycle can be defined as a set of states and the transitions between them during

a runtime of Android’s app. However, passing data between these states is imple-

mented by sharing resources or asynchronous messages.

During the changing between states of an activity, events might occur [8, 9]. These

events might cause in case of low memory, low battery, the triggered event from an

external app such as incoming calls, or by the users themselves such as switching to

another app. Particularly, on an Android device, Android’s OS can’t control the state

of an app during lifecycles change due to limited resource and screen size. Thus, the

OS must ensure efficiently the device resources. It may swaps out or kills an app

without saving its current state In case of a lack of resources. However, Android

Activity Manager inside Android OS is responsible for receiving and handling these

events [9]. So that, handling events is done between the app and Android’s system.

Thus, the synchronous event handling is done using triggering lifecycle’s model by

the app itself.

Accordingly, developers themselves must control and ensure that no data is lost when

the state changes when developing Android apps [8, 9]. The developers react the

changing state and handling events by overwriting the callback methods such as on-

Create(), onResume() and onPause()..etc. These callback methods executed when an

app changes his state e.g turn video off when an incoming call event happens. So

that, its responsibility for Android developers to override/implement the callback

methods, in another word (lifecycle implementation /conformance).

What’s more, a correct conformance of lifecycle in Android is very important to pro-

duce high robust and stable apps [8]. To understand that, imagine that during a user

has typed a long message in Facebook messenger, the incoming call event occurs.

Then, the event triggers OS to pause the currently opening messenger app and open

11

the phone app. During closing the messenger app, the callback method called on-

Pause () is called by the OS. So that, if the developer doesn’t save the message text

inside onPause (), the message will lose and the user has to retype the message again

after the call finish and resuming to the messenger app.

Another fact about the conformance lifecycles in mobile apps is that it is very stressed

[8]. Different Android mobile devices like phone or tablet, has restricted user inter-

face. That means only one app is visible on the device screen. Additionally, the

mobile resources such as CPU, battery and memory are limited on these devices, so

that the mobile platform schedules processes and makes the only visible app in the

active state. This scheduling strategy will give only the visible and active app the

required resources. By reflecting this fact, which related to the mobile platform over

than other platform as the desktop, on lifecycle conformance that means for each time

that a user returns to the home screen or switch between apps the callback methods

are called because of a user can not open more one app in each time.

Android developers have to comply with the lifecycle model [9]. Android vendor

offers a lifecycle model and documentation to help developers comply to activity’s

lifecycle [17]. Thus, developers must follow it [9]. In addition, the Google official

website is the main portal for the Android’s developer, it contains the guidelines for

the Android’s development model lifecycle and documentation [8, 9, 3].

The Android’s activity lifecycle model is shown in Figure 2.2 from the Android de-

veloper’s guide [17, 8]. It shows that an activity must be on one of five states. These

states are [8]:

• Start state: When a user invokes an activity.

• Run state: When the activity stays in the foreground (full UI).

• Pause state: The foreground activity is partially viewed on screen.

12

– When another activity obscures the running activity, lost user focuses or

screen locks.

– When the activity is in the run state, then the screen locking has been acti-

vated.

• Stop state: When the activity was not visible on screen. It is running in the

background and remaining in the memory.

• shut down state: No activities exist in memory.

– When Android OS kills the activity process which runs in the memory.

– When Android OS kills the activity in the stop state in order to free re-

sources.

13

FIGURE 2.2: Android activity lifecycle model [8]

In Figure 2.2, The ellipse shape represents an activity state while the rectangle shape

illustrates lifecycle’s callback methods, which developers can override to react events

over other state transition [8, 9]. The Android’s model and documentation show

seven callback methods and its detailed description as follows [17]:

• The onCreate(): It uses to initialize the activity. It also calls when the activity

is created. Inside oncreate(), setContentView(int) is usually used to define UI,

layout resources and views for the activity. In addition, the setContentView(int)

is used to retrieve widgets from the layout. Some setups are done inside the

14

onCreate() such as bind data and provide a bundle to keep the previous state of

the app. The onCreate() permanently followed by the onstart().

• The onStart(): It calls when the activity is becoming visible on the screen. It also

followed by the onResume() if the activity was in the foreground or the onStop()

if the activity was hidden. However, there haven’t been more useful detail in

how to use instant () in the Android’s document.

• The onResume(): It calls when an activity starts interacting with a user. So, the

activity will be on the top of the activity stack. Inside the onResume(), develop-

ers start initializing and acquired system resources and connections to networks

and databases. It permanently followed by the onPause().

• The onPause(): It calls when an activity is becoming invisible or when a user is

loing the focus on an app. It also uses to deal when a user leaves an activity. Any

change made by a user should be committed in the onPause(). The data must be

saved to persistent data or content provider to keep it from lost. Moreover, sys-

tem’s resources must be released or stopped animations and other things that

may be consuming CPU. Some developers use onSaveInstanceState(Bundle)

method instead of the onPause() to save any dynamic instance state in the activ-

ity into the bundle, to be the last received in the onCreate(Bundle) if the activity

requires being recreated again. But this is a wrong because the onSaveInstanceS-

tate(Bundle) is not a part of Android callback method’s documentation.

An app enters the pause state briefly, so to keep the app performance and re-

liability, developers must avoid putting a heavy or long running code inside

the onPause() callback method. The onPause() callback method followed by the

onResume() if the activity gets back to the front and show in the foreground, or

the onStop() if the activity becomes invisible to the user.

• The onStop(): It calls when the activity is invisible to a user because another

15

activity is becoming in the run state. Then, the activity becoming in the back-

ground and running in the memory. Developers must insert a heavy or long

running code inside the onStop() rather than the onPause() such as closing net-

works, threading, and database connection. The onStop() callback method fol-

lowed by the onRestart() if a user opens the activity again or the onDestroy() if

the activity is killed by the system.

• The onDestroy(): It is the final call of the activity. It calls to perform any final

cleanup when the activity finishes or when the system kills the activity to keep

system’s resources such as memory and CPU. However, developers mustn’t

use the onDestroy() to store data. Thus, if an activity modifies data in a content

provider, These modifications must be committed on the onPause() due to there

are some cases that the system kills the activity without calling the onDestroy()

callback method. Instead, this method can be used to free resources such as

threads.

• The onRestart(): It calls after the activity has been stopped, before to it being re-

displayed again. It also uses to require a cursor object. Cursor object provides

random read-write access and management to the result set that returned by

a database query. The activities that using a cursor object instead of accessing

and managing a database using managedQuery() require the cursor object again

inside the onRestart(). This happens because these activities must deactivate the

cursor object inside the onStop() callback method. Moreover, the onRestart()

callback method also followed by the onStart().

Developers override these callback methods inside the activity class as shown in Fig-

ure 2.3.

However, In order to start an activity these cases might occur [8]:

16

FIGURE 2.3: Overriding callback methods inside an activity

• The startActivity(Intent) method is called. It takes an intent as an argument,

which describes the activity to be executed.

• When a user invokes an app, the onCreate(), onStart() and onResume() will be

called and the activity’s state will be changed to the run state.

• If another activity turns up at the front of the running activity, the onPause()

callback method will be called and the app run state will be changed to the

pause state.

• If the paused app becomes unavailable and the other activity becomes in the

foreground, the onStop() callback methods will be called to change the app state

from pause to stop state and the app will be run in the background inside a

memory.

• If the stopped activity is invoked again and run in the foreground, the on-

Restart(), onStart() and onResume() will call again to make the app again in

the run state.

• If another app needs memory and system resources, the OS will destroys and

kills the stopped app and the app will be in the shutdown state.

17

In addition, users may do some action that reflects the activity state:

• BACK button: When a user clicks on the BACK button, the system will kill the

app and change its state to the shutdown state.

• HOME button: When a user clicks on the HOME button, then the system will

call the onStop() callback methods. Then, the app remains running in memory

and its state changes to stop state.

• Orientation: Android offers landscape or portrait orientations. When a user

changes orientation between themes, the app will destroy and recreate again.

Android activity source code can be analyzed to find statistics related to activity’s

lifecycle development. These patterns are related to the callback methods usage,

and other challenges that might influence activity’s lifecycle development. The next

Chapter 3 introduced the analyzing methods, lifecycle development challenges, and

literature review related to analyzing Android source code.

18

Chapter 3

Literature Review

This Chapter presented a literature review in the area of analyzing Android source

code in various sectors. The review was based on a selection of published literature

predominantly in analyzing Android source code. The search period was set from

2010 to 2017.

The keywords used in the search: Android; Lifecycle;Static analysis; Mining;application;

Apps; source code.

Deep search was run in Google Scholar, IEEE, springer, ACM and ICIT databases.

Papers which discussed analyzing Android source code or Lifecycle topics were se-

lected from the literature. The methodology of critical writing was followed to guide-

line based on the paper "how to or not to do literature review" [18].

In particular, this chapter showed the analyzing of Android source code in various

fields such as design, privacy, security, quality, localization, prioritizing, energy and

testing patterns. It also arranged as follows. In section 3.1, it showed an introduction

about a current Android analyzing studies. Section 3.2 showed analyzing methods of

Android source code. Section 3.3 showed lifecycle studies and challenges, whereas

section 3.4 showed privacy and security analyzing patterns which was divided into

permission, API, data flow and control flow patterns.

19

Section 3.5 showed design analyzing and section 3.6 quality analyzing patterns. Fur-

ther, section 3.7 showed other analyzing patterns which includes a one studies of

each related topics in testing, prioritizing, localization and energy analyzing patterns.

After that, section 3.8 highlighted the thesis gap and section 3.9 provides a conclu-

sion. In order to give readers a quick access for the literature review, the Figure at

AppendixA.2 was represented to show a brief map for the literature review studies.

3.1 Introduction

Analyzing Android source code is used to find code patterns. Modern research in

fields of analyzing Android source code patterns focus on different fields such as

design, quality privacy, security and others. This thesis focus on a statistical analysis

of Android apps for lifecycle coding patterns field. These are very important as it can

reveal in depth insights of developers coding behaviors. As shown in this chapter,

there has not been a previous research yet in the field of analyzing lifecycle coding

patterns for a huge dataset of Android activities.

3.2 Analyzing of Android Source Code

Analyzing source code is not a new topic, it was used in different programming lan-

guages such as JAVA [19]. However, there are few research points to use analyzing in

Android source code.

Analyzing source code includes several methods using a statistical or dynamic/mining

analysis [19]. Both a statistical or mining analysis has no major difference. They work

to find and extract hidden truths from a set of data. These extraction truths are called

20

patterns. A statistical analysis is a base of a mining. Moreover, both of them help to

make decisions, learning from data and turns data into information.

Statistical analysis focused on quantifying data [19]. Using analysis tool, a relevant

and hide properties and patterns of large data were extracted using a different type

of statistics such as descriptive and inferential statistics. Whereas, mining focuses on

finding a relationship and patterns on large data using different mining techniques

such as classification, association, and visualization. Indeed, mining also includes an

estimation and prediction theories and decides a noise from significant results.

A lot of analyzing studies has focused on statistical or mining was shown in the next

sections of this chapter [10]. Further, a lot of tools were developed using one of these

methods of analyzing. These tools performed analyzing of source code for different

purposes. Some researchers used the analysis tools for code review and to help de-

velopers to check errors as compilers. The others implement it on the source code to

extract hide patterns from code.

In this thesis, a statistical analyzing was implemented using our developed tool [19].

It depended on summaries and arranges data to draw conclusions from entire An-

droid’s activity source code dataset.

3.3 App Lifecycle Challenges

Understanding app lifecycle is the main point to produce more quality and reliability

Android app. Actually, there were little number of studies that consider a lifecycle

model in their research. This section showed three main studies related to the mo-

bile lifecycle and its challenges. The first was [8] in reverse engineering and testing

approaches. The second was [8] also used assertion test-based approach. Then, the

21

third was [3] which used static analysis approach for testing conformance of an app

lifecycle.

Franke et al. [8] proposed a case study approach to reverse engineering of a form

of dynamic analysis for the app lifecycle. Their approach was applied in four steps.

The first was a full implementation of apps lifecycle. In this step, developers create

apps follow the lifecycle model and overwrite callback methods. The second was

log Injection by adding logging functionality to callback method. Logging includes

callback method’s name and the current app name. The third was transition trigger

detection to get a list of triggers which causes the reaction of the android system. The

fourth was an app Lifecycle model rebuild that provides developers a correct lifecycle

model based on the collected information.

The findings of Franke et al. study argued that the Android activity lifecycle model

and documentation which published by Android’s vendors are informal, inconsistent

and incorrect [8]. They have discovered errors in the transitions between the states in

the official activity model, they have found the inconsistency between the official ac-

tivity model and the Android documentation offered in Android developer’s guide-

line. In the activity documentation, for example, the shutdown state did not define

while the model representation includes the two run and shutdown states. Further,

the pause and stop states did not represent in the model while they defined on the

documentation.

An important point which also they found that the running apps in the foreground

definition is incorrect. The app in the foreground means that it has user focus, but

the researchers found that the running app could be without taking a full focus of

a user. Consequently, the incompleteness and inconsistency in the activity’s lifecy-

cle model and documentation will cause some problems for developers during the

development Android apps.

22

All these findings challenge lifecycle’s conformance. So that, They also followed the

approach of reverse engineering to the Android activity’s lifecycle model to over-

come these challenges [8]. They rebuild a new model which is correct, formal and

consistent. The new Android’s activity model is shown in Figure 3.1.

FIGURE 3.1: Android activity rebuild lifecycle model [8]

The rebuild model consists of four states [8]. These states are shutdown, pause, run

and stop. Between shutdown and pause states, there is a small state which do not

have a name because the activity passing through briefly. The transition between the

states shows the callback methods which will be called to react events. The activity

passes through the onCreate() or onRestart() briefly, then go to the onStart().

In their model, it shows that the activity on the run state will not be killed [8]. But,

when an app in the pause or stop states, the system may kill the app without calling

any callback methods. Thus, if developers store the data or close the opened con-

nection during the onStop() callback method, the data might be lost. That leads to

bugs and runtime errors whether the system will kill the activity. Instead, develop-

ers can store the data and close the connection inside the onPause() callback method.

Because of that the onPause() is the first callback method that the system will call be-

fore killing the app. Whereas, developers must avoid defining these in the onPause()

23

method in case of a heavy code’s functionality, due to causing the ineffective quality

of the app. They can do it on the onStop() method instead.

The other points shown in the new model that the activity will remain briefly on

the onCreate() or onRestart() methods, then will go to the onStart() [8]. So, devel-

opers must avoid establishing connections and networks during the onCreate() or

onRestart() and do it in the onStart() instead. Also, the activity can briefly pass the

onStop() then to the onStart() without calling the onResume() method. If developers

close the connection during the onStop() and start it during the onResume(), This will

cause run time errors because onResume() will not call.

Furthermore, in their findings argued that there are other challenges that might face

the mobile’s developers concern with to the activity’s lifecycle which, was the ability

to test the activity’s lifecycle for each type of mobile platform versions is very difficult

[8]. However, developers usually use the emulator or simulator to check that the

app’s functions achieved the user’s perspective. In fact, they found that the emulator

or simulator behave differently than the real device. So that, many events caused by

lifecycle model can’t be tested.

Again and due to testing the activity’s lifecycle causes many challenges for develop-

ers as mentioned previously, there was another study of Android lifecycle. Regarding

to [9] study, Franke et al. depended on the previous approach of reverse engineering

for correct Android lifecycle model. Their study’s approach followed assertion test-

based approach to check the functionalists whose state or value might differ between

lifecycle callback methods. It used to test data persistence of components such as text

fields or databases, so if the current value of any component change after calling the

callback method with the old value, that means it is wrong in lifecycle implementa-

tion and the assertion test will be fail.

In their approach also, they test a connection status, such as the internet or Bluetooth

24

and hardware status like Wifi and speaker [9]. The test scenarios were applied to

Google Notepad app using three scenarios and different Android libraries. Then, a

tool that supports the correct implementation of Android app’s lifecycle was built

through integrating a result of the lifecycle testing approach. The tool helps devel-

opers to insert assertion and execute a initialization step of testing app’s activities.

Using the tool also, a developer can decide a type of assertion, parameters and in

which callback method the assertion will be involved. Further, this tool helps and

reduces a development effort of testing lifecycle dependent properties.

However, another challenge related to activity’s lifecycle is that developing a high

quality, more reliable and robust mobile apps needs a full understanding the activ-

ity’s lifecycle model, states, and transition as showed in [3]. Zein et al. argued that

the task of development mobile app is more complex. Due to limited tools for the re-

lated issues of activity’s lifecycle, which help developers in the lifecycle conformance,

most bugs in mobile app development are related to lifecycle conformance. In their

study also, they argued that developers need to know whether the system’s resource

such as Camera, GPS, USB..etc was acquired to use or released correctly during lifecy-

cle activity’s conformance. Also, developers should guarantee that the app manages

system’s resources and do not lose a data during changing the activity states. If the

app can’t acquire and release the resources correctly, this will lead to runtime errors.

So that, developers should refer to Android developer guidelines which contain in-

formation which helps them to manage the system’s resource. In their findings also

showed the way’s in how developers manage resources and loss the data also was

affected by the inconsistent in the old activity lifecycle model. Although, the new

model was considered on the official website. But, there were still a lot of novices and

amateur developers who do not have a deep understanding of the activity’s lifecycle

models.

25

Leading to this challenge, Zein et al. presented a study related to lifecycle confor-

mance which concern with the new Android correct lifecycle’s model and rules by

[8] and the result testing lifecycle scenarios by [9]. In their study showed that an app

conforms to lifecycle rules if it’s able reacting to a lifecycle state change well, storing

data and managing system’s resources such as Camera, Microphone, Video, Network ,

and GPS correctly. When an app paused or sent to the background, a resource should

be released. However, failing in managing system resources consumes the main mo-

bile resources as battery, memory, and CPU also causes runtime errors.

Also in their study, Zein et al. provided an automated approach depends on a static

analysis tool called Android Lifecycle Inspector (ALCI) to manage a mobile system’s

resources during different lifecycle stages. ALCI helps novice developers building

very qualified mobile apps. It is implemented using a mobile software model which

extracts the lifecycle system resources rules and creates a repository for these re-

sources. ALCI approach also analyzes the source code of an app against the rule

lifecycle’s models to verify that whether an app has been correctly initiated and re-

leased system resources.

ALCI’s resources rules repository which contains formal, simple and complex rules

for resources was built [8]. However, the lifecycle’s rules change over time. So that,

ALCI’s model was built compatible with platform’s versing. ALCI uses the gener-

ated model rule to match resources API call and decide whether the resource man-

aged correctly. However, developers wrote codes in different patterns and styles. To

overcome this, ALCI algorithm able to find two common coding patterns. The first

pattern when the developer releases a resource inside a callback method. The second

pattern, when a callback method calls a function that releases a resource.

The input of ALCI algorithm was the model resources rule with a list of system re-

sources and an app source code [8]. While the output was a generated report contains

26

a list of warning about the resources that have not been acquired/released correctly.

ALCI approach was evaluated into real Android open source apps depends on the

seeding bugs principle. The evaluation considered two factors. The first was detected

incorrect and correct releasing of system resources. And, the second was performed.

The evaluation result of ALCI over ten apps showed that ALCI was able to static

analysis of the system resources during lifecycle stages.

ALCI was the first tool that uses a static analysis to analyze the Android lifecycle [8].

However, there was no previous study used a static analysis approach for collecting

statistics about lifecycle utilization. The strong point here that, Zein et al. study’s

methodology can be used to explore a statistic and patterns related to lifecycle and

managing system’s resources as showed in this study. To introduce these issues which

were related to activity’s lifecycle, this study was covered all these challenges to pro-

vide an exploratory study about how Android’s developers used the lifecycle’s states

and managed the system’s resources.

3.4 Analyzing for Privacy and Security Patterns

Before 2008, developers uploaded their app to markets without any prevention [15].

So, millions of a third party and low price apps offered to users. However, the in-

creasing development of mobile causes spreading of unsafe or malware apps. Mal-

ware apps mostly download into devices without authorization. Also, they cause

unexpected behavior without users awareness.

Further, the ability to modify on Android source code makes the malicious code easy

to inject into apps [20]. It makes Android device susceptible to threats such as denial

of service, buffer overflow, SQL injection, memory corruption, intercepting SMS and

retrieving API’s information attacks. Therefore, it’s important to protect a mobile

27

device from malware apps and detect malicious behaviors and threats [21]. Malicious

detection techniques are considered to do that.

play prevented any app contains malware contents to upload in its market by scan-

ning apps using antivirus.The available apps on online market such as Google play

are not protected. They add to users an ability to merge third party apps [22]. Dur-

ing 2012, Google Although, apps were tested before uploading into Google market to

exclude any app which includes malicious activity, the process of revision apps still

unclear. Also, it’s not easy to define malware app from benign. However, most users

depend on free apps which available in unofficial markets that may use repackaged

app contains malware.

Using malware on a mobile app is attractive goals for attackers [22]. The reason for

a malware development relies on gainful industries because the race of malware de-

velopment is available to any user for making a new malware. In order to detect

malware in mobile apps, developers are interesting, understanding and studying an-

droid platform natures and its app security [15]. This makes researchers have a big

attentions on a privacy and security issues.

The privacy and security issues in mobile platform consider permissions. Permis-

sions protect users from unexpected behavior [22]. It prevents app to access privi-

leged resources, especially user privacy resources. An app request a permission from

a user during the app installed. However, users mostly don’t read required permis-

sion [15]. There are four types of permissions. Firstly, normal permissions that do not

need user approval. Soundly, dangerous permissions that need to a user approval

before the app installed. Thirdly, the signature permissions that do not need user

approval or knowledge. Its use of the app signed with the certificate of the device

manufacturer’s. Fourthly, the signature system permissions use when app created by

28

various vendors, use image system or signed with the certificate of the device manu-

facturer’s. API level uniquely identifies the framework API revision and permissions

[22]. For instance, in Android manifest file, there are 151 system level permissions

available and over 4,000 classes at the API level 21.

Another issue related to Android security and privacy is a flow of a sensitive data

[22]. The sensors in mobile device lead to deal with sensitive’s information. Addi-

tionally, users depend on the authentication process when uses the online payment

for example.

Android platform prevents app to access hardware resource privileges, other apps

on a device and sensitive information such as location and contacts [22]. It uses some

permission mechanisms to let the device owner to accept that. When the owner in-

stalls an app on the device, all permissions which are decided by developers must be

granted. However, developers need a deep knowledge about the required permis-

sions which are implemented in the manifest file over deciding a suitable API that

required to use device features.

Android documentation of permissions and API helps developers to use a correctly

and minimal set of permissions and select APIs [22]. Misuse of permissions or use

many permissions threaten the privacy and security issues. This leads to failure in

a functionality of features. However, Android doesn’t provide ways to recommend

using suitable API to permissions. In order to solve this, many approaches used static

or dynamic analysis of Android OS or frameworks to study that.

Some of proposed studies provides a security and privacy systems which follow dif-

ferent approach’s [21]. Some of these systems depend on the Android permissions

system, using requested critical permission that is performed by apps. This might

be unsuitable because the permission request from an app in some cases does not

use the code but its need the package of advertisement. Whereas, some malware

29

doesn’t want any permission. So that, other systems based on the bytecode semantic

information. They depend on data flow analysis to check vulnerabilities and severe

permission. By contract, these systems have the ability to check only specific vulner-

abilities in the apps. However, some systems use API analysis, which overcomes and

replaced previous systems.

This section shows some of these studies related to analyzing security and privacy

patterns. These study related to analyzing Android apps concerns with previous se-

curity and privacy systems. This section included analyzing permission, permission

and API, data flow and control flow techniques.

3.4.1 Permissions Patterns

Some studies used to analyze of the Android permissions system to find security

and privacy concern issues. This section discussed four major systems working on

analysis the permissions patterns.

The first study [23] proposed an approach called Mobsafe using analyzing, and cloud

computing to evaluate mobile app security and to decide the malware and benign

mobile apps. In other hands, the second study [20] presented an approach called

Droid Permission Miner using static analysis to identify the permissions that lead to

malware in mobile features using Androguard tool. Whereas, the third study [15]

proposed a pattern analysis approach to identify a record and a used permission to

differentiate malware from safe apps. Finally, the fourth study [24] presented ana-

lyzing techniques to seven thousand apps to decide how the permissions principle of

used and how it interacts with other also how developer used Android libraries in

the general market.

30

Xu et al. [23] depended on a cloud stack infrastructure and Hadoop Storage of a com-

puting platform called Mobsafe. Mobsafe analyzed APK file from apps and stores

result in the Hadoop Storage. Mobsafe also used a static analysis through adapting a

Static Android Analysis Framework (SAAF) and dynamic analysis through adapting

an Android Security Evaluation Framework (ASEF) in order to evaluate apps and

calculate a total time for evaluation all apps in the markets.

ASEF used to analyze Android apps. After uploading an unknown app on Mobsafe,

the logging and traffic sniffing was turned on [23]. Then, the app installed on the

Android virtual machine. ASEF simulated the human interaction on the app and

then compared the log of a virtual machine with CEV library and internet activities.

Then, it analyzed the log file and internet traffics to check malware and vulnerabilities

in the app. Further, the SAAF extracted APK file and analyzed the permission and

patterns of the app. Finally, Mobsafe evaluated by collecting the dataset from the

China app market.

The results of their study showed that, ASEF needed around 2 minutes to analyze 20

android apps [23]. By contrast, 33.93 seconds needed in the same apps using SAAF.

Moreover, Mobsafe approach was practical to detect malicious apps from all stored

apps in the markets.

However, Aswini et al. [20] depended on a huge dataset from Contagiodump reposi-

tory. Around 209 malware and 227 benign Android apps from an open internet source

were collected. Each sample set of malware and benign apps were divided into two

parts. One half of a training set and one half of a test set. From the training set of mal-

ware and benign apps, permissions were extracted. In order to extract permissions

from the sample, APK file was entered into Androguard. Androguard used a python

script called androaxml.py to extract the manifest file from the samples.

The resulted permissions around 158 benign and 141 malware were extracted [20].

31

Then, filter process was implemented over the resulted permissions to extract fea-

tures. After the filtering process, the number of feature sets was 63 for benign and 56

for malware permissions. Then, the permissions were grouped into four parts. There

were 75 features are union malware and benign features, 44 common to malware and

benign features, 12 discriminant malware features and 19 discriminant benign fea-

tures. On the 44 common features, some features were excluded and pruned because

it does not contribute to deciding the target class. After pruning, the including com-

mon feature numbers were 18. Moreover, the 75 union feature set was split into two

target groups which are 49 benign and 26 malware.

Consequently, the feature selection of variable feature length was applied using Bi-

Normal Separation (BNS) and Mutual Information (MI) on the 44 common features

[20]. BNS was computed by the absolute difference between the normal cumulative

distribution function of the true positive rate features and the inverse of the normal

distribution cumulative function of the false positive rate features. Whereas, the MI

was computed the dependence of two variables. In this study, The features of greater

BNS values were selected.

The result of their study found that the random forest was the best classifier than a

neighborhood [20]. Moreover, the top feature accuracy was lower than bottom fea-

tures of the top and bottom features of BNS values. The comparison between BMS

and MI feature selection to identify unknown samples found that MI was better. As

a result, the MI with a small feature length was better classification accuracy.

However, Moonsamy et al. [15] depended on two different malware and safe app

were collected. Each dataset was separated out two parts, one part for the used per-

missions and anthers for required permissions. So, the fours dataset was used in sta-

tistical analysis using frequency counting to define the most popularity permissions

in each set. As a result, around fourteen thousand’s permissions for malware were

32

founded across four thousand for safe. From these permissions, unique and common

permissions were extracted.

Unique permissions which called for all permissions founded in each separate set,

whereas the most common permissions which called for all permissions found in

both sets [15]. Around 33 and 20 unique required permissions for safe and malware

apps, 70 common required permissions and 5 unused required permissions were dis-

covered. Whereas, 9 and 4 unique used permissions for safe and malware apps, 28

common used permissions and 87 unused used permissions were discovered.

What’s more, a hierarchical Biclustering was applied using Agglomerative Hierarchi-

cal Clustering (AHC) on the datasets to offer figures and graphs that view the data

distribution of the groups of apps which used a request or used permissions [15].

AHC applied to the row, column dimensional data matrix, and bottom-up clustering

to find subclusters in a level tree form. The low-level clusters joined to produce new

clusters. This process of joining clusters was repeated until joining all clusters of one

large single cluster. Then, The use and request matrices were generated.

As a result, the required permission was observed more than used permission [15].

Also, the abnormal apps used a request or used permissions more than the normal

apps. In the detection process between normal and abnormal app, the unique permis-

sions were better than common permissions. After that, Contrast Permission Pattern

Mining algorithm (CPPM) was implemented to define a set of permissions which uti-

lized to differentiate malware from a killer app and to develop permission detection

techniques. Further, CPPM worked on multiple datasets to find frequent, infrequent

and combination permissions between them. It finds the candidate permission com-

bination of each set using Apriori-based itemset approach. Then, it used Support-

based candidate pruning used to calculate the frequency of a certain itemset on the

resulted candidate permissions itemsets from the previous step. So, only the frequent

33

permission used in mining permission pattern because of its hold many features than

infrequent permission. The selection of permission pattern related to support values

of both datasets. Constant permission pattern had the greatest support value.

A result of CPPM in their study showed that, 23 permits were founded [15]. There

were 6,15,1 permissions belonging to normal dangerous, signature and signature sys-

tem category. Moreover, 56,31 required and used permission patterns was founded

from malware dataset, whereas 17, 9 from a safe data sheet. The most required and

used permission, from a dataset, was founded on the internet. The experiment result

showed that the used permissions consider helping in the malware app detection, by

contract the official documentation let some API level 3 utilized permissions that did

not declare in the Android manifest file.

Moreover, Dering et al. [24] used 213 permissions from android documentation to

decide how the permissions were used. They analyzed the manifest file and finding

the similarities with the traditional permission was applied. The Jaccard which equal

to the intersection of similar permission over all permissions for the result set and

old set was computed. The Jaccard values are over 0.1 for permissions considered to

select the similar permission. 55 permits were reminded. Then, a graph was used to

represent the relation between resulting permissions. The graph showed the result-

ing permissions as a group of related functionality and tells about how to use these

permits. However, to decide how the library was used, 100 common library names-

pace was used and grouped according to service. Seven thousand Android apps were

analyzed and scanned the namespaces also decomposed them with the 100 common

libraries. For each remixed library Jaccard was computed with threshold value over

0.25, then the graph was used to represent libraries set to find a cluster. Through the

interaction of the libraries in a graph, developers understood how to build the apps

and how to use library functionality.

34

3.4.2 Permissions and APIs Patterns

Some studies used Android permissions system and API feature’s call to find secu-

rity and privacy concern issues. This section discussed three major systems work-

ing on analysis the permissions and API patterns. The first study [16] showed an

approach to classifying android apps whether malicious or benign using Bayesian

classification techniques. Bayesian classification use frequently features, characteris-

tics to detect malware and reduce them from apps market. The second study [25]

showed an approach to evaluate clustering techniques using K-means algorithm on

Android apps and apply them in malicious detection. In addition, the third study [22]

presented AP-Miner approach using static analysis and data mining. It depended on

the frequent API and permission used in existing apps in the market stores. Thus,

AP-Miner helps to recommend for each API a suitable permit must be used, so it can

assist in development when developing a new app.

Yerima et al. [16] study purposed a reverse engineering tool to disassemble.dex file

into smaller files to extract features from APK file. Moreover, it generated features

from the manifest file. The features set include API call, command and permission

detection. Their approach designed in two stages. The learning stage which used a

set of a malware sample. And, the detection stage, which extracted a feature set from

the app to use them for detection. To increase the performance of Bayesian classifier,

the feature set was ranked and selected the most relevant one in the feature selection

function. One thousand malware and another one thousand benign sample app were

collected to evaluate Bayesian classification using accuracy and error rate metrics.

Finally, the result in their study argued that the approach achieves better detection

rate and it’s suitable to use Bayesian classification in the malware detection’s.

Whereas, Samra et al. [25] study implemented through collecting android apps, ex-

tracting apps, processing and extracting data from the manifest files and creating an

35

ARFF file which contained a set of features. The ARFF file was entered to K-means

algorithm in WEKA tool which classified the document to k-number cluster then give

the evaluation. Their approach was evaluated by extract the features and requested

permissions of eighteen thousand Android manifest files from business and tools cat-

egory. The evaluation depended on the precision metrics which decides how many

apps on a correct cluster of all clusters sizes, the recall metrics which decided the

number of apps on the correct cluster from all apps and f-measure metrics which was

a combination of precision and recall value. The three metric’s value results equal

to 0.71. The results in their study argued that the machine learning and clustering

techniques were able to use in order to detect the malware.

However, according to Karim et al. [22] study around 600 apps from F-droid dataset

were collected. Then, AP-Miner was used to analyze each app and extract the per-

missions and API from APK files. After that, association rules and frequent itemset

mechanism were used to find the rules for these permissions and API. However, in

order to find transition set of association rules, two types of mapping were imple-

mented in the apps dataset. These are baseminer and filteredminer. In the baseminer

mapping, itemsets were the apps dataset and frequent itemset was permitted and

API used in an app. The API was founded on the import statement of Java source

code by applying static analysis using SRCML. Whereas permissions were founded

by passing the manifest file and extracted uses tags. Therefore, the training set of

permissions and APIs was extracted. Then, using the filteredminer, refinement the

training set was applied to remove unnecessary APIs and permissions by check the

traceability of these. Lastly, the filtered miner mapping process was implemented on

the two sets.

The results of their mapping were the groups of traceable permissions and APIs. Each

group, the relations between the subset were considered. However, It seemed many

36

to many relations. So that, the equivalent groups were generated from these rela-

tions as transition sets. By applying association rules on a transition of permissions

and APIs, frequent itemsets were found, according to the minimum itemset support

value and confidence value which computed by the ratio of the API support to the

permission support. The minimum support threshold was defined equal to 1 and the

minimum confidence value of 40% to 80%. Further, the result list of association rules

were defined as API class permission, then ranked according to the confidence and

support values. Through resulting rules, AP-Miner recommended permissions for

the API. These rules were compared with another recommendation as Androguard

and sort according to some metrics. Androguard detected the traceability between

API and permission and use a static analysis to map between permission and API.

The metrics were the precision metric which was measured by dividing the correct

number of predictions set over a correct place in the correct number of prediction set;

the recall metric which was measured by dividing the correct number of predictions

set over the all number of the sets; and f-Score metric which depended on Recall and

Precision values. However, The dataset was divided into 10 folds of 60 apps. For each

10 running, the metrics were computed. As a result, AP-Miner was recorded better

precision and recalls than Androguard and Scot.

In the same study [22], another qualitative analysis was applied to check if the re-

sulted association rules exist in the Android documentation. After Android docu-

mentation was analyzed and compared with a random sample of 30 rules of top con-

fidence value. The result showed that AP-Miner was very accurate at the recommen-

dation the permission to APIs. So, AP-Miner helped developers because it giveed a

recommendation that not found in Android documentation. So, the resulting rules

can use to update the Android documentation permission.

37

3.4.3 Data Flow and APIs Patterns

Some studies used android data flow analysis to find security and privacy concern

issues. This section discussed three major systems working on analysis the data flow

patterns. The first study [26] developed an approach called Androidleaks which is

a static analysis, an automated framework that discovered a potential privacy leak.

Androidleaks classified the apps to malicious leaks or benign leaks depends on the

personal information that was transferred off in mobile. The second study [21] pro-

posed a system which relies on analyzing and classification in order to replace the

previous system. The classifier was built in order to detect malicious apps, identify

malware patterns and take a suitable design to protect devices. it depended on the

API level information which helps to recognize a malware from a benign app. Also,

the third study [27] showed an approach called Mudflow which used a static anal-

ysis to define the flows of the sensitive data source in the mobile device. Mudflow

used mining and classification to find patterns for the flow of benign app behavior.

It compared the malicious and benign app depending on the treating of a flow of the

sensitive data. Then, Mudflow utilized the patterns to detect malicious app behavior

using the classifiers.

Gibler et al. [26] used Androidleaks to analyze JAVA code and bytecode depending

on DED and dex2jar. The permissions were mapped with its API Which defined in

the manifest. They also argued that their study helps to understand a suitable permis-

sion for functionalists. Through the mapping, the data flow between source and sinks

was decided. Then, using WELA, a call graph and data flows were generated and an-

alyzed to decide the potential paths which passed the private and sensitive data over

the internet. Further, WELA produced System Dependency Graph (SDG) to decide

the dependence on intra control and data in order to provide a taint analysis. Also,

forward slicing was computed using the return value of the source method in SDG.

38

Then, the slice was analyzed to decide potential leaks of the sensitive data. However,

WELA cannot handle the callbacks in apps. So, the listener registers method was

decided during the mining code process. The type of listeners was defined for the

method parameters, then the callback parameters were analyzed.

Consequently, in their study, around 24,350 Android apps were collected to evaluate

Androidleaks framework [26]. Moreover, 2,342 apps were manually verified for some

privacy leaks such as data, wifi, phone information, GPS location, and audio recorded

with the microphone. So, their study result showed that the number of discovering

leaks in 7,414 Android apps was 57,299.

Nevertheless, Aafer et al. [21] approach followed three phases. Firstly, the feature

extraction phase, which was for extracting the most malware features. The data flow

analysis approach and the extraction of APL level were used in the extraction phase.

To apply that, the large sample apps around twenty thousand sets of malware and

benign was collected from McAfee and Android malware genome project resources

to generate its API call. The from the bytecode; the API level information such as the

dangerous API calls; the package level information about invoking the dangerous

API and parameters level information to passing parameter values when the API

invoked; the app requested permission; particularly class; method name; the caller’s

package name; and the callee parameters were extracted.

Secondly, it was the feature refinement phase [21]. In refinement phase, the most com-

mon package as Android and JAVA packages were removed from the set, whereas

the other has remained. Further, API calls which used in advertisement package or

third-party package, which are responsible for the most malware in apps were ex-

tracted from the remaining set. Then, the itemset of advertisement, web tracking and

web ranking were tested and compiled.

As a result, from the refinement phase, approximately 412 advertisement packages

39

were found [21]. Moreover, any API was invoked through the advertisement pack-

age was defined. In other hands from the feature set, the server input was defined

using the data flow analysis. Also, the most frequent parameters were produced

to decide the most severe parameters and each app requested them. The resulting

parameters set was very large, so the parameter feature set was reduced and catego-

rized. Then, the frequent API on malware rather than benign was defined. Moreover,

from the APK files, the list of feature vector was created to link with the class names

even malware nor benign. However, in order to apply the previous two phases, the

Droidapiminer tool was built. Droidapiminer was a static analysis tool for python,it

analyzed the API level to help understanding the malware activities.

Thirdly, the model learning and generation phase [21]. In generation phase, a rapid

miner was built to produce the classification model. Four classification algorithms

were generated from different types. The SVM algorithm relaid on learning method,

KNN algorithm relied on lazy classification and the decision tree classification algo-

rithms were ID3 DT and C4.5 DT. Then, the split validation was used in the dataset

by dividing the dataset into two parts. One for training the classification models and

the other for testing them. However, to decide the performance of each classifier al-

gorithm, the accuracy test and evaluation were computed by dividing the number

of malware and benign feature by all datasets. Additionally, the True Positive Ratio

(TPR) and True Negative Ratio (TNR) were measured. TPR computes the percentage

of the correctly classified malware apps, whereas TNR computes the percentage of

the correctly classified benign apps.

However, in their study two experiments were implemented [21]. The first experi-

ment was done with permission requested. The permission requested was extracted

from the dataset and sorted according to a various usage. The top frequently mal-

ware permission requested set was considered to apply an accuracy test, TPR and

40

TNR. After the first experiment was tested, the result showed that the number of

frequently set in malware was 64. So, if the set contained more permissions, the ac-

curacy increased. The result of the first experiment concluded that the permission

model was not robust because the manifest files malware authors can define benign

permissions to fault the classifier. Moreover, the repackaged Android malware which

seemed benign app and tried to achieve malicious goals cannot be classified.

The second experiment was done with the package and information level [21]. Us-

ing the fetcher vectors which included the most frequently API that generated before.

The top 169 frequently API was classified and evaluated its performance. The result

of the second experiment showed that KNN. C4.5 accomplished a higher accuracy

and less performance classifier. Also, in the main dataset, the parameter model was

generated and evaluated in the same way. So, 20 parameters were added to the 169

top frequently app. Finally, their study result showed that the KNN classifier accom-

plished higher accuracy and performance than others. As a result, the API feature’s

model, package, and the parameter level information was better than the permission

model. Also, the best classifier model was KNN, then ID3, SVM C4.5.

According to Avdiienko et al. [27], around two thousand android benign apps were

collected and fifteen thousand malware apps from Google Play. In their study argued

that Mudflow helped to detect attacks and recognize a known attack. Also, it was

useful for the user to understand the behavior of the apps of the sensitive data. For

the sensitive data on Android, malicious apps used the sinks of the data source other-

wise benign app. In Android, apps used to access the sensitive data. The abnormality

of the malicious app detected using its flow of treating. The data flow analysis de-

pended on a taint analysis to detect apps behavior. The taint analysis determined if

the flow of the data comes from source to unwished for sinks such as sending infor-

mation to the third party server.

41

In their approach Mudflow used Flowdroid tool to offer a taint analysis [27]. Also,

Flowdroid gave the models of the interaction the operating system with the app life-

cycle. Its extracted the all sensitive data flows from source to sink to generate a set

of pairs. For each benign app in the dataset, the vector of probabilities according to

SUSI categories was defined. The SVM used these vectors for classification the be-

nign apps from malware. So that, their finding shows that Mudflow showed that the

number of detected malware apps was around 86.4% also the 10,552 malware apps

approximately 90.1% of malware app hacking the sensitive data.

3.4.4 Control Flow Patterns

Some studies used android control flow to find security and privacy concern issues.

This section discussed two major systems working on analysis the control flow pat-

terns. The first study [28] presented model called DENDROID to analyze malware

and families in a mobile device using text analyzing for the code structures. DEN-

DROID approach used a code structure which was not used before. It differed due

to some reason. First, using code structures to represent the malware and families

do strongly avoid obfuscation. Second, dealing with the huge amount of data be-

comes easily using analyzing. On the other hand, the second study [29] developed a

system called Droidminer. Droidminer depended on static analysis and data mining

of Android malicious apps to find malware patterns in order to detect malware on

unknown applications. Moreover, for each detection, Droidminer decided the mali-

cious families classification and its characteristics. Droidminer was designed to fit the

changes in the codes. It was very useful in detecting the emerging attacks. Further-

more, it was automating, learning and updating the patterns by using new malicious

samples.

42

According to Suarez-Tangil et al. [28] approach, Android malware genome project

was selected to collect a dataset. The dataset contains around one thousand mali-

cious app includes 33 different families. For each app in the dataset, decomposition

the source code into code chunks which represented a method in class was imple-

mented using Androgurad. Then, CFG was used to represent the sequences in each

coding structure. Followed by applying text mining on the CFG. Further, around

eighty thousand code structures was found in the dataset. Some mining definition

was used to analyze such as variance, redundancy, size of the set according to fami-

lies. Then, distribution the code structures according to its families were processed to

find the frequency and the fraction the apps in the families. Also, the feature vector

for each malware sample and families was decided by the Vector Space Model (VSM)

which was recited by applying the computing family algorithm to the structure code.

The nearest neighbor (1-NN) classifier was applied to the families of unknown mal-

ware samples depending on these code structures to find the family of each malware

instance. Then, clustering was used in the malware families and analyzed using den-

drograms (Phylogenetic Trees for Biological Species) to find the similarities and dif-

ferences between each family.

Whereas, Yang et al. [29] used Droidminer to extract all sup paths and sub-sequences

of malware control flow instead of depends on the method, class or field names detect

malware. Then, 24,66 malicious apps were collected to evaluate Droidminer. Droid-

miner process defined in two phases. The first was mine and the second was identi-

cal. In the mining phase, Droidminer mined malicious patterns from a set of Android

apps. The same malicious apps families have similar functionalities and behaviors.

Droidminer used two tried graphs to represent the app’s resources, API, and program

logic in two layers. The first layer graphically represented by the Dependency Graph

43

Component (CDG), which demonstrated all interactions between the different com-

ponent an app. Then In the graph of the second layer, Droidminer taken an app as

input to generate the Behavior Graph (BG) using the Behavior Graph Generator com-

ponent (CBG) which used to represent the functionalities and behaviors for the app

components. Through the common behavior was extracted as patterns (API pattern

resources patterns, control flow patterns) by mining all paths and subpaths. Also, it

generated all sub-segments from the subparts.

Droidminer implemented the machine learning mechanism over the resulting set of

patterns [29]. In their study, the four different machine learning classifiers (Naive

Bayes, SVM, Decision Tree and Random Forest) were used to evaluate Droidminer.

For each classifier’s, the performance metrics as a False Positive Rate (FPR), detection

rate and accuracy were computed. The result showed that Droidminer accomplished

95.3% of detection the malware rate by using Random Forest classifiers. Droidminer

also saved the detection rate more than 86% for all classifiers. Also, Droidminer ac-

complished higher detection rate and lower false positive than using extracted per-

meation approach.

On the other hand, in the identification phase, Droidminer identified whether the

app was malware or benign through generating the modality vectors from unknown

apps and comparing them with the patterns from the first step [29]. So, the apps

considered as a malicious if its malware patterns induction overran malware thresh-

olds. A similar family classification for the mine phase was decided. So, the random

forest classifier was used to evaluate the ability of Droidminer to decide the mali-

cious family. A set of samples from 12 different families was collected for evaluation.

Droidminer produced 92.07% accuracy classification. Moreover, Droidminer used the

association rules to decide the malicious behavior characteristics from analyzing the

patterns in knowing family classification relationships to decide malware behavior.

44

3.5 Analyzing for Design Patterns

Design in software engineering is an activity which starts with the ideas of the engi-

neers and transform it into different models and diagrams [30]. Using modeling and

design, engineers try satisfying customer’s goals. For a long time, models, diagrams,

and design patterns were involved in different studies. Design patterns are a general

solution to a common problem. It may evolve over time. When a new better design

pattern has developed, It may replace with more popular one.

On Android platform, there were few studies about design issues and patterns. In

most cases, these studies depended on analyzing android source code to gain design

patterns. Moreover, these studies were implemented methodologies that have been

applied in the JAVA platform. In this section, two main studies discussed the de-

sign issues concern with Android analysis. The first study was about analyzing the

changes of design patterns [30]. Whereas the second was about analyzing API call

Usage Pattern (ACUP) [4].

Alharbi and Yeh [30] presented an approach to analyze Android apps to find evolves

and changes in user interface design patterns using mining techniques. Their ap-

proach was used a study methodology that includes five main stages which called

collect, decompile, extract, state and diff stages. These stages were applied by imple-

menting a system that contains five components.

The first component was the apps and listing detail web crawler for collecting stage

to download large numbers of the Android app and its updates and save its APK’s

file. Second, using the actual component to decompile stage to extract the app’s codes

and get a directory file tree in order to analyze UI design patterns. Third, the feature

extractors component used to extract the source code and directory file tree features

and save them in a data store. From these features, the manifest file, layout, and

45

string definition files were parsed. Also, some information related to a GUI struc-

ture was gathered. Moreover, a bytecode was analyzed to extract GUI behavior. The

fourth components was the database client driver which was implemented as data

store used to query and retrieve data from the database and gived outputs as CSV

file. Fifth, the transformation trackers state stage component to calculate some statis-

tics, complex and descriptive statistics. In the final, the data stage to compare the

differences, common change and updates for GUI patterns in two different app ver-

sions.

Moreover in [30] study, the main method was followed for all findings depended

on retrieving data into the database by applying multiples query structure depends

on a pattern and the most related keyword in order to obtain. The methodology of

their study was applied to the most eight design patterns. The result of their study

argues that some app updates his detail to follow the design pattern changes. What

is more, the others, which have not applied design patterns, try to switch to use a

design pattern.

On the other hand, Lamba et al. [4] showed the developer styles and feedback of

using Android platforms in mobile app for new development through analyzing and

mining android apps in order to find API call usage patterns. ACUP “is a pattern of

method calls, wherein all the methods are invoked together in the same user-defined

method”. ACUP, it mainly can define the error location and recognize functionality

and software component influences. Which is why, their study stated the extracting

a main popular invoked the ACUP, classes, methods, packages, and interfaces are

more beneficial for the API consumers and producer relations. Moreover, it helped to

maintain the level of development in android systems.

The main motivation in their study [4] that it had not been done previously for An-

droid. So, its methodology depended on related work of analyzing ACUP for JAVA.

46

Also, it depended on the most popular methods, classes, interfaces and packages in

JAVA. Additionally, it was the first study, which used graphically present it’s finding

result on API usage by advanced visualizations such as radar char, heat-map, bubble

chart.

So that, thousands of Android source code apps were manually downloaded from

F-Droid to implement their methodology [4]. At that time, F-Droid contained 13 cat-

egories for app also the whole of its apps provided in the Google play. For each app

in the dataset, theAbstract Syntax Tree (AST) was translated from JAVA source code

file. Then, a note was made for each method declaration also the invoked methods of

a method declaration. The name of the method was used to represent AST transition.

The transition was recorded by a set of invocation method which used to generate

frequent itemsets. Then, analyzing and mining techniques was performed on the

patterns itemsets. Further, SPME which is open source data mining tool was used in

an analysis. Also, the Aproriclose algorithm was applied for mining the itemsets in

order to avoid redundant patterns and find frequent item sets. The frequent itemsets

were filtered based on the size. So, the patterns of size less than 4 was removed and

did not consider as an ACUP. Consequently, The result showed that the most pop-

ular ACUP is on alertdialoginandroid. Moreover, the merging iterative process was

applied using a coefficient index to compare a similarity and diversity of itemsets and

help to present broad functionality.

The popularity of packages, classes, and interfaces were computed through counting

the number structural unit that was imported to explore the relationship between An-

droid platform and mobile apps [4]. That’s helped API producers use better popular

alternatives in order to enhance the quality and usability of the app. In other hands,

the framework changes were measured to help API consumers understanding how

much adaptation. Also, it helped API producer offering solutions to problems in case

47

of API changes that violate compatibility with older apps. Secondly, the most popular

API changes were discovered. APIs set of specification differences which were above

of level 10 was analyzed and put a note of modified elements in each version. In

the results, Android MTP package was found which is the most used and introduced

packages. However, The popular method was decided by computing the number of

invocations. After implementing the result found getstring, tostring and add are the

most popular method. The study was discovered that if any class is removed from an

API, the API producers taken a lot of time to edit app’s code.

Additionally, ACUPs was analyzed based on their occurrences of different categories

in the dataset [4]. Their approach argued that API consumers introduced to know

their interest elements in the app’s category in order to enhance them in different

apps. Apart from that, API producers understood how API implements in various

app’s categories. The ACUP that discovered in 9 out of 12 categories was viewable

on Android, which concerned about the size, padding, and margins the UI.

The two previous studies [30] and [4] used data analysis and mining approach to an-

alyze large-scale Android apps. All of them analyze some related design patterns. In

[4] research focused on discovering ACUP to enhance developers for using related

and popular ACUP, method, class, packages that help to increase the quality and

usability of apps in order to raise the scale of customer satisfaction. While in [30] re-

search focused on discovering the most popular GUI design patterns and the changes

that will lead to creating more reliability and usability apps for customers.

However, both of them use different methodology to reach the study’s goals. But, the

main common point in each of them is popularity. So, in their depend on analyzing

and mining to extract popular patterns of source codes, system files or some descrip-

tive information by analyzing the number of occurrences of the patterns using name

declarations or known keywords.

48

3.6 Analyzing for Quality Patterns

There are millions of Android apps in online markets. Quality is the most important

issue that takes user attention in these apps. Markets provides a market rating system

to offer a user ability of feedback an app. When Users install an app from a market,

they will take into consideration the app rates in the market. So, developers try to de-

velop high-quality apps to satisfy users’ needs. However, developers cannot decide a

quality of an app before publishing it to a market. In this section showed two studies

about analyzing quality patterns of Android apps. Both of the two studies depended

on analyzing android source code to gain quality issues. The first study was about

app quality metrics, whereas the second focused on a quality of apps performance

and GUI.

Shaw et al. [31] presented an approach that depended on analyzing and mining An-

droid apps to decide a quality metrics to help developers. Then, around tens of thou-

sand Android’s APK files were collected from Slide Me market to process a reverse

engineering using apktool in order to produce the bytecode with resources and man-

ifest files. From these apps, the top (5.0) and lowest (0.5-2) 1000 apps rate was com-

pared according to the average values of quality metrics.

Moreover, three quality metrics were used in [31] study. First was the size metric

which includes the number of instruction, classes, method, method per class, instruc-

tion per method and the Cyclomatic Complexity. Second was the object-oriented

metric which includes the number of children, depth of inheritance tree, access to

public data, cohesion and coupling. The third was the Android specific metric which

includes Unchecked bundles, APK file size, number of string resource and bad smell

methods that may lead to bugs such as a show() and onkeydown (). Further, to gain

a result from their study, the Difference index (DI) was computed to indicate which

49

the metric is a concern to the user rating. For each metric, DI equals to the percentage

to the top over the bottom apps. Finally, the result of their study argued that An-

droid specific’s metrics are more suitable than other metrics for assessing the quality

of Android apps.

However, Gómez et al. [32] presented a DUNE context-aware approach to detect a

defect of UI performance that helped the developers to build more quality apps and

decide the performance defect in new releases of the app. DUNE had four phases.

The first phase was the gathering performance metrics. Performance metrics were

analyzed for the frame and UI event statistics. The second was an assembling data

which can be used to build a model in order to detect a performance defect. The

third was the detect performance deviation by comparing the app defect with the

performance metrics. And, the fourth was the frequent contest mining using WEKA

tools and Apriori algorithms to implement an association rule to find context pattern.

Therefore, they argued that the generated context rules helped the developer to avoid

the performance defect.

3.7 Analyzing Other Patterns

This section contained several studies in different fields of analyzing android source

code. These fields included testing, energy, prioritizing and localization.

In testing field, there was one study of analyzing Android testing patterns. The study

presented the mobile device platform was different than other platforms such as PC,

screen size, touching the screen and sensor features in mobile platform require a user

interaction. Also, user interaction quickly evaluated on library and APIs and frag-

mentation on mobile device platforms lead to new challenges in mobile app testing.

However, manual testing on mobile was performed more than automated testing

50

due to a limitation of available testing tools. And, generated manual test case scenar-

ios consumed a testing time in the development phase. However, recording testing

scripts decreased the time.

So that, Linares-Vásquez et al. in [33] provided a GUI based model called MONKEY-

LAB which depended on analyzing to solve current challenges was in generating test

scenarios. However, previous models cannot generate a test case for the unobserved

event in an execution trace from an app source code. The aim of their study was

to provide automating testing approach more powerful than manual testing. MON-

KEYLAB approach used to analyze to generate test cases, especially event scenarios

for natural and unnatural user usage for apps. It followed four phases. The first

phase was a record phase in order to record the execution event traces. Thus, the get

event command was used to collect low-level event log even click type event or other

events that happen during the execution an app. The second was mining phase is in

order to analyze event traces. The vocabulary of GUI model was extracted from APK

source code and event logs.

Furthermore, to analyze source code, the APK-analyzer was used to decompile source

code using the dex2jar and Procyon tools [33]. Also, srcml tool used to convert the

source code to XML and apktool to extract APK resources file. From XML and re-

sources, APK-analyzer assigned GUI component and represented them as action and

type tuples. For example, button represented as a click. Then, event logs analyzing

was implemented by the data collector to collect a sequence of tokens from event

logs which are represented GUI event. Each line in the event log was described by

time stamp, input method, an action, property concern the actions and other property

value.

Additionally, GUI component was extracted by translating low-level event logs into

51

the natural language description [33]. From GUI component, GUI tree, which in-

cluded information about the component, its location and dimension was imple-

mented by the Android view server was ruined in the device. Then, a component

area was calculated by adding location to a dimension which decides the correspond-

ing GUI component in order to avoid the dependency between events on a screen

device. However, Using mining phase, GUI model was represented, including activ-

ities, component, action, and transition. Then, the third phase was generate phase in

order to generate scenarios using dynamic and static analysis and the GUI model data

which was extracted from mining phase used to build a statistical language model.

And the fourth was validated phase to validate the generating scenarios through in-

teraction with a real device.

Apart from that, in the energy consumption field, there was one study of analyz-

ing Android energy patterns. The study showed that the increasingly demanding on

mobile apps replace others platforms, such as desktop and web [34]. Through mobile

apps, users satisfied whole needs by offering the most features. Therefore, mobile

resources differed in different mobile versions and a user’s usage. The mobile de-

vices seemed a huge energy consumption. Conversely, a battery lifetime in mobile

devices was limited. That leaded a user to rapid recharging device battery. Avoid-

ing frequent discharge or using less energy consumption app might solve frequent

recharging problems, but most benefits app were using a huge power for example

video. Additionally, a high power consumption was caused by API misapplication

or programming errors.

So that, Linares-Vásquez et al. in [34] presented a qualitative and quantitative study

to show the causes of a high energy consumption on Android platform. Their study

depended on data mining the API call method and usage patterns. When developers

52

used a suitable API and usage patterns, it helped to reduce a high energy consump-

tion. The study was implemented in 55 Android 4.2 apps using Nexus 4 LG phone.

Also in their study, the main dependent variable was energy consumption. In order

to measure energy consumption, a set of scenarios was defined for 55 apps collected.

The scenarios were recorded using recorded monkey tools. Execution of these sce-

narios was automated because of its long time.

Consequently, the estimation of energy consumption of collecting a data was divided

into the three steps [34]. Firstly, the scenarios were monitored to collect execution

trace from the activity manager profile. Secondly, the execution trace was analyzed

to assign power measure to Android API methods. Then, API usage pattern was

computed which its energy consumption computed by all invoked methods energy

consumption. In their experiment, only the pattern of the length of 2-3 was selected.

Thirdly, the signature of sequences for invoking a method was defined to match them

in the source code. When their study was applied to the collected data, approximately

131 API method calls 18 patterns of length 2 and 8 patterns of length 3 were extracted.

However, by referring to the source code, the API was concerned with the GUI, image

manipulation, and database founded as the top energy greedy group.

Whereas, in the prioritizing field of Android apps, there was also one study of ana-

lyzing Android prioritizing patterns. The study showed that Android platform was

produced by a huge various device manufacturer [35]. Android fragmentation drived

main challenges in software engineering process. Moreover, mobile hardware such as

screen size and resolution were taken into account by app developers. It’s important

for the developer to know which was a device model to gain more users. So, selecting

a fit device model was a critical issue in app development.

So that, Lu et al. in [35] presented PRADA approach using mining the usage data

onto apps in larger scale in order to prioritize the list of suitable device models for

53

an app. The data usage of the apps included the operational profiling that gives a

quantification of the app using. PRADA utilized filtering techniques to predict how

to use an app in different mobile models. PRADA also depended on the users of an

app to decide the more priority device model. Then, it was evaluated by wandonujia

data set. 200 apps from media and game categories was selected for evaluation. Then,

the total browsing time that users interacted with an app was computed. For the

dataset, around 14,7 thousand device model and 3 million users were recorded.

Again, there was one study in the field of analyzing Android localization patterns

[34]. The localization was a process to adapt the software into a specific region,

whereas the internationalization was a process to introduce the software that can be

adapted to different languages and regions. Linares-Vásquez et al. in [34] showed a

model to understand and collect information about internationalization, localization

and translation through analyzing android repositories especially android SCM Lo-

gos. Through analyzing the source code to decide how localization occurs and who

was responsible to do it and how the number of people needs to do. In their study,

the analysis was done on Android R file by comparing the localization (es/values-

xx/strings.xml) and internationalization file (es/values/strings.xml) through imple-

menting a set of SQL queries. In their result showed that Android should make the

localization process easily by obtaining specialized team to do it.

3.8 Highlight the Gap of knowledge

A little attention has been focused on activity lifecycle model development. However,

there are no previous studies about analyzing Android source codes lifecycle usage

patterns except one study that used analyzing to testing lifecycle conformance [3].

To fill this gap, our aim of this study is using a statistical analysis to analyze Android

54

source code by developing a tool. SAALC tool is able to analyze Android source code

and explore the issues patterns related to lifecycle, especially callback methods and

manage system resources to give community general statistics about lifecycle usage.

Through using a methodology to analyze Android source code lifecycle patterns, this

gives developers and researchers a vision about Android development practices by

providing statistics in a lifecycle utilization from available open source code apps.

3.9 Conclusion

Modern research focuses on analyzing Android source code patterns. These researches

provide new ways and patterns of different fields like design, privacy, security, qual-

ity, localization, prioritizing, energy and testing patterns. The patterns aids develop-

ers to produce more efficient, tolerance, high quality and reliable application. Analyz-

ing lifecycle coding pattern has not used in modern study yet. It helps to understand

the behaviors and experiences of developers to give novice and amateur developers

guidelines for development correct activity which conform to lifecycle model.

The understanding activity model lifecycle is very difficult for the beginner develop-

ers. Actually, there are limited tools that used in lifecycle conformance. Moreover,

as mentioned before, some studies show that the Android activity lifecycle model

and documentation are informal, inconsistent and incorrect. However, these stud-

ies overcomes these problems by rebuilding a new model of activity lifecycle, but

it still affects the developer behaviors.Therefore, analysis Android source codes and

find patterns related to losing data and resource management was introduced in our

study to understand the developers behaviors. Additionally, it gives new developers

and researchers a view of current lifecycle utilization of development activities.

55

In the next chapter, the methodology of this thesis was presented. The methodology

considered Android dataset collection and analysis using our implemented tool.

56

Chapter 4

Research Methodology

Analyzing a huge dataset of Android source code for exploration lifecycle usage pat-

terns was not introduced before. To fill this gap, a large dataset was collected to

explore these patterns. The patterns were considered as useful information and statis-

tics which is extracted from a dataset. Our research contributes to use analyzing of

Android source codes in order to provide a general statistics about lifecycle patterns

for the community. This chapter presented our research methodology. Section 4.1

showed a flow of the research method. In section 4.2, it showed our data collection.

And, section 4.3 showed our data analysis approach.

4.1 The Research Methodology Flow

The main aim of this study is to explore how real Android developers develop their

apps in terms of lifecycle callback methods. To address this need, a quantitative

methodology was applied to explore patterns using analyzing of Android source

codes. Analyzing was implemented on a dataset of Android activities to extract in-

formation about the usage of lifecycle’s callback methods, managing (acquiring and

releasing) system’s resources and the nature of code inside callback methods.

57

In this section, our research methodology flow was presented. It was structured de-

pending on two previous studies. The first study is [4] which was guided us in how

selecting a dataset of Android activities, analyzing its source codes and displaying

results. Also, the second is [3] which was guided us in introducing a static analysis

for Android’s activities.

This research methodology was implemented in five steps. Figure 4.1 shows the

phases of our research methodology using a flow diagram. These phases are:

1. Selection phase: F-Driod repository was selected to obtain Android apps.

2. Pre-processing phase: all activities were extracted from each apps.

3. Transformation phase: each activity was transformed into Abstract Syntax Tree

(AST) object model. AST object was used to get information about each activ-

ity’s source code such as packages, fields and methods declarations.

4. Analysis phase: an analysis tool called a Statistical Analysis of Android Lifecy-

cle (SAALC) was developed to analyze Android activities.

5. Extraction phase: some patterns were extracted after the analysis phase. These

patterns concern about lifecycle usages.

6. Representation phase: statistics were collected from the patterns. Then, reports

and indications were generated which offered a feedback to the community

about Android lifecycle usages. Further, effective visualizations were used to

draw results of our analysis using graphs such as Column, Heat and Column

map, Pareto and Bubble Chart.

58

FIGURE 4.1: Methodology flow diagram

4.2 Data Collection

Implementation the analyzing for Android source code requires a dataset of Android

apps. This section described how collecting our dataset.

During the Selection phase, a repository called a Free and Open Source Software ap-

plications for the Android (F-Droid) was selected [36]. Then, a dataset of Android’s

apps was collected from F-Droid. The apps collection methodology was followed as

proposed in Figure 4.2. It includes five steps:

59

FIGURE 4.2: Data collection methodology

1. Find a data repository: after large sets of related work were studied, this helped

us finding the Android apps repository. The repository F-Droid was selected.

F-Droid is a popular platform and an online software repository which con-

tains open source code for Android apps [36]. It is invoked through a link:

"https://fossdroid.com/". Most apps in F-Droid is also available on Google

play [36]. F-Droid was selected because it provides a categorization of the An-

droid apps. This categorization helped in analyzing Android apps according to

the app categories. At Dec 8, 2016, F-Droid contained 2001 apps (1420 also on

Google Play) organized in 17 categories [37]. The distribution of a Number of

Apps (#App) is showed in Table 4.1.

2. Collect URLs for Android apps: URLs for the apps which was stored in F-Droid

60

and hosted on GitHub was collected. The URLs collection process was auto-

matically done. A script was written to collect URLs for each category and save

them in a file. Then, Sahi tool was used to perform the automated app’s URLs

collection [38]. However, some problems were faced during the downloading

apps using Sahi, because of the size of apps source code is very large and needs

lot time. In order to overcome that, the downloading app process was done in

a different way as shown in the next step.

3. Download apps source code: a piece of JAVA code was written to download

app’s source code using the app’s URL. The apps were downloaded from its the

individual pages. For every app’s URL, JAVA code was connected to it, down-

loaded a zip file of source code and decompressed it. In total, 842 apps were

downloaded in our dataset from 17 categories. The distribution of a Number of

Downloaded Apps (#App Downloaded) shown in Table 4.1.

4. Define Android’s manifest file: for every 842 apps, a piece of JAVA code was

used to search for the manifest files, parse it using XML parser and obtain the

names of all activities inside it using "<activity android:name>" tag.

5. Collect Android’s activities: activities names were used to do an automated

search also using JAVA code of the activity files. The activity files were copied

into our dataset library. However, the activities file names were changed to

avoid the conflict with other activities that have the same name. In total, 5577

activities were collected and organized into 17 categories. The distribution of a

Number of Activities (#Activity) shown in Table 4.1.

Consequently, the dataset of our research includes 5577 activities extracted from 842

Android apps, which organized into 17 categories as shown in Table 4.1. Table 4.1

shows that System category has the largest #APP then Multimedia [36]. Moreover,

Internet category has the largest #App Downloaded then Multimedia. And, the largest

61

#Activity was found in categories Internet then Science & Education.

TABLE 4.1: Distribution of the dataset over the app categories

Category #APP
#App

Downloaded
#Activity

System 265 78 325

Multimedia 242 104 532

Games 221 93 422

Internet 217 122 952

Navigation 135 58 370

Science & Education 118 45 624

Theming 108 26 94

Reading 104 40 347

Time 104 55 328

Writing 94 37 242

Development 92 28 182

Connectivity 84 51 236

Security 68 32 215

Phone & SMS 53 15 159

Money 40 26 266

Sports & Health 35 23 247

Graphics 21 9 36

Total 2001 842 5577

Each sub figure 4.3a,4.3b and 4.3c show a Pareto Chart. The Pareto Chart gives our

dataset a graphical distribution using a combination of a line and bar graphs. The

sub figures contain a bar chart which represents the cumulative totals of #App, #App

Downloaded and #Activities across each category, while the line graph shows the

cumulative percentages for them. The Pareto chart reveals that 45% of activities in

the dataset belong to 23% of the categories inside the first four categories which are

Internet, Science & Education, Multimedia,and Games.

62

(A)

(B)

(C)

FIGURE 4.3: Distribution of the dataset over 17 categories in F-Droid: (A) Number of F-Driod
apps(#App). (B) Number of downloaded apps(#App Downloaded). (C) Number of collected

activities (#Activities)

63

4.3 Data Analysis

Analyzing Android source code is very important to provide feedback and indica-

tions for the community about actvity’s lifecycle usage. The strong issue here that

this approach of analyzing has not applied before for Android. So, our analyzing

methodology was applied depending on others source codes analyzing platform such

as JAVA which was followed in this research as showed by Lamba et al. study[4].

In this study, developers and interested researchers were helped through showing the

usage of the mobile activity lifecycle by automating the process of analyzing source

code against the lifecycle model and documentation. The goal of analyzing method-

ology was to obtain hidden patterns from Android apps dataset. Then, statistics and

reports were generated from these patterns to return a basic information for the com-

munity about callback methods and system’s resources. To do the analyzing process,

SAALC tool was developed. This section showed a detail about SAALC’s architec-

ture, implementation and testing.

4.3.1 SAALC Architecture and Implementation

SAALC is able to read a huge dataset of Android activities and use the lifecycle’s

model rules to analyze it. SAALC is the first tool which implemented the analyzing

a huge dataset of Android activities. Figure 4.4 depicts our proposed analyzing ap-

proach using a structure diagram of SAALC tool. It shows a block diagram of the

main components of SAALC as well as the approach of the analysis process.

64

FIGURE 4.4: Structure diagram of SAALC

The block diagram of SAALC includes these component:

• Java Parser component: it is an open source and free parser available on GitHub,

it uses to parse and convert the Android source code into AST [39]. The AST

object contains a list of import packages, methods, field declarations for each

class of a source code. These declarations were used in our analysis. Using an

import package declaration, the names of packages that declared in the class

can be decided. Additionally, using a field declaration, the field names and its

type can be decided. And, using a method declaration, method names and its

body contents can be decided.

• Android Source Codes Reader component: it reads a dataset of Android’s acti-

vates.

65

• Output Report component: it produces output reports in Comma Separated

Values (CSV) file format.

• Resource List component: it produces a list of resources.

• Resource DB component: it stores resources information in an XML file.

• Analyzer component: it’s the main component in the diagram. Analyzer com-

ponent applies two handling algorithms. So, it inherits in two types:

– State Analyzer component: it inspects dataset source code to collect statis-

tics about callbacks methods and the natures of code inside them.

– Resource Analyzer component: it inspects dataset source code to collect

statistics information about managing system’s resources.

In general, the steps are described in our approach as follows. First, SAALC reads

the system resources information from the repository using Read Resource compo-

nent, then produce a list of resources using Resource List component. Secondly,

JAVA Parser component parses Android source code and produces AST object model.

Then, using the resulting object model produces by Java Parser, the tool applies two

types of algorithms. The first algorithm called State Analyzer, which is responsible

to collect information about each callback methods such as the count of each callback

method and the nature of code inside them. The second algorithm is called Resource

Analyzer that inspects the source code against system resources list. The tool pro-

duces results report in CSV file format using Output Report component.

The system’s resources were stored in Resource DB component in the XML file repos-

itory. XML file dynamically increases the tool’s ability to insert new information re-

source. The information for 9 system resources was stored such as Camera, USB, Sen-

sor, Network, Input, GPS, Database, Bluetooth, and Audio. This information includes the

resource name, package names, the name of acquiring and releasing methods and

66

the name of callback methods which used to acquire and release the resource. All

above information was taken from the official Android site [17]. Moreover, these in-

formation were used to extract patterns from the dataset. At Appendix A.1, Table A.1

shows the repository information for the nine system’s resources.

In Analyzer component, the Analyzer algorithm was built in JAVA language. This

algorithm is able to reach all statements in any method’s body. Also, it is able to

analyze the common coding patterns and styles. Below are the common coding style

is used by developers [3]:

• Developer calls the acquired or released method directly inside a callback method

block as shown in Figure 4.5a.

• Developer calls another method or nested methods inside a callback method

which in turn calls the acquired or release method as shown in Figure 4.5b.

• Developer call the acquired or release method inside if, while, for, switch, try

catch, threads or object block statements which are inside the callback method

or other nested methods as shown in Figure 4.5c.

(A)

(B)

(C)

FIGURE 4.5: Common coding styles

Sometimes, developers did not acquire or release system’s resources inside callback

methods. Instead, they use different methods which do implement other kinds of

67

events. Android source code was analyzed against these events. These events in-

cluded methods which were overridden in the activity source code and did not a call-

back method. These event methods were referred in the result section using "OTHER"

keyword.

However, the code analyzing process was divided into two parts:

4.3.1.1 State Analyzer Algorithm

The proposed algorithm for State Analyzer can be described in pseudo-code as shown

in as follows:

• Algorithm Input: List of all activities source code in our dataset.

• Algorithm Output: A report result in CSV (occurrences of callback methods).

Algorithm basic steps:

1. Load a list of activities source code.

2. For each activity in the list of activities, parse and traverse the activity source

code into AST. Then, analyze the source code to find and count the occurrences

of the callback methods which were used.

3. If onPause() ,onDestroy() or onStop() callback methods were founded in the

source code, then analyze the nature of code inside each of them related to re-

leasing, database or threading actions.

4.3.1.2 Resource Analyzer Algorithm

The proposed algorithm for Resource Analyzer can be described in pseudo-code as

shown in as follows:

68

• Algorithm Input: List of all activities source code, List of system’s resources

information.

• Algorithm Output: A report result in CSV(occurrences of system’s resource in

the callback methods).

Algorithm basic steps:

1. Load a list of activities source code, and list of resource information. This in-

cludes all resource names, package names, names of acquiring and releasing

methods.

2. For each activity in the list of activities, parse and traverse the activity source

code into AST.

3. For each system resources such as Camera, GPS etc, analyze the source code of

each activity to find in any methods (callback or OTHER methods) where this

resource has been acquired and released.

For example, when Resource Analyzer component tries to check Camera resource oc-

currence, it searched for all Camera resource package name such as "Android.hardware.camera"

as shown in Table A.1. If the analyzer finds it, then it searches for the names of vari-

ables that developer initialized for Camera resource in the fields declaration list. So, if

the analyzer finds the field declaration as "Camera camera1", then the name of Cam-

era resource that used by the developer is "camera1". The analyzer then checks all

callback or "OTHER" methods inside the activity, then return all statements which

declared in each of them. If the analyzer finds any statement which contains Cam-

era resource variable name and the method that used for acquiring Camera resource,

then it increases the count of acquired Camera resource for this method. For instance,

if analyzer finds "camera.open()" statement inside the onCreate() callback method,

that’s mean developer acquired Camera resource inside the onCreate(). Whereas, if

69

the analyzer finds any statement that contains Camera resource variable name and

the method that used for releasing Camera resource, then the analyzer increases the

count of released Camera resource for this methods. For instance, if the analyzer finds

"camera.close()" statement inside the onPause() callback method, that’s mean devel-

oper released Camera resource inside the onpause().

4.3.2 SAALC Implementation

SAALC was built in JAVA programming languages. At Appendix A.3 Figure A.1

shows a deep descriptions for associations between classes inside SAALC using a

class diagram implementation.

4.3.3 SAALC Testing

SAALC tool deals with a large dataset of Android’s activities and that’s made our

analysis very hard. To implement SAALC testing, firstly it used for analyzing a sam-

ple of 10 activities. The testing was implemented through log statements such as the

print statement and debugging steps of the codes. When the correct result was en-

sured from this sample, then the number of activities was increased gradually until

reach to 50 activities. Finally, the analyzing process was applied to 5577 activities in

our dataset.

In the next Chapter, the extracted patterns and statistics were generated after analyz-

ing the collected dataset using SAALC tool.

70

Chapter 5

Results

In this section, the result of our study was shown after the analysis process was ap-

plied to 5577 Android’s activities. The result was divided into three parts as shown

in the following subsections 5.1,5.2 and 5.3. The first section showed the results of the

callback methods usage, the second for the resource usage and the third for the na-

ture of code inside some of the most influences callback methods such as onPause(),

onStop() and onDestroy().

5.1 Usage of Callback Methods

In this section, the percentages of occurrence of the activity callback methods over the

data set were founded. Moreover, it showed the percentages of occurrences for the

callback methods over the app categories.

5.1.1 Percentages of the usage of callback methods over the dataset

In the first part, State Analyzer algorithm was run to count the total of occurrences

for each callback method for the 5577 activities. The result set was presented in Table

5.1.

71

TABLE 5.1: Distribution of callback methods over the dataset

Callback method #Activities %Activities

onCreate() 5115 92%

onResume() 1299 23%

onPause() 888 16%

onDestroy() 780 14%

onStart() 346 6%

onStop() 341 6%

onRestart() 31 1%

Table 5.1 shows the number of each callback methods was founded in the dataset.

Also, it shows the percentages of occurrences for each callback methods count over

5577 activities. On the other hands, these results was represented in Figure 5.1 which

shows a Bubble Chart. The Bubble Chart considers three dimensions: (i)the hori-

zontal axis represents the callback methods names; (ii)the vertical axis represents the

counts of occurrence of each callback method; (iii) the bubble size indicates the third

dimension which represents the cumulative percentage of the callback methods. The

Bubble Chart also shows that the most occurrences callback method is 92% for onCre-

ate() followed by 23% for onResume() then 16 for onPause() , 14% for onDestroy(),

6%s for onStart() and onStop() and the last is 1% onRstart().

FIGURE 5.1: Buble Chart: Distribution of callback methods over the dataset

72

5.1.2 Percentages of the usage of callback methods over the app cat-

egories

Our analysis of callback methods was also produced in relation to the categories of

the Android apps. The counts and percentages of callback methods were shown ac-

cording to the F-Driod categories distributions in Table 5.2.

TABLE 5.2: Distribution of callback methods over the apps categories

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart()

Connectivity (224) 4% (28) 1% (59) 1% (46) 1% (21) 0% (77) 1% (4) 0%

Development (167) 3% (14) 0% (38) 1% (22) 0% (9) 0% (18) 0% (0) 0%

Games (392) 7% (22) 0% (107) 2% (93) 2% (21) 0% (49) 1% (1) 0%

Graphics (35) 1% (0) 0% (11) 0% (3) 0% (3) 0% (7) 0% (2) 0%

Internet (888) 16% (77) 1% (261) 5% (181) 3% (80) 1% (138) 2% (4) 0%

Money (227) 4% (8) 0% (79) 1% (44) 1% (10) 0% (44) 1% (0) 0%

Multimedia (514) 9% (49) 1% (133) 2% (108) 2% (35) 1% (100) 2% (8) 0%

Navigation (309) 6% (26) 0% (95) 2% (68) 1% (24) 0% (35) 1% (1) 0%

Phone & SMS (150) 3% (10) 0% (46) 1% (26) 0% (6) 0% (19) 0% (0) 0%

Reading (331) 6% (16) 0% (55) 1% (48) 1% (15) 0% (46) 1% (2) 0%

Science & Education (550) 10% (11) 0% (115) 2% (46) 1% (22) 0% (35) 1% (0) 0%

Security (196) 4% (10) 0% (50) 1% (38) 1% (11) 0% (26) 0% (2) 0%

Sports & Health (215) 4% (12) 0% (28) 1% (19) 0% (13) 0% (30) 1% (0) 0%

System (295) 5% (26) 0% (74) 1% (42) 1% (28) 1% (59) 1% (4) 0%

Theming (70) 1% (4) 0% (14) 0% (4) 0% (3) 0% (14) 0% (0) 0%

Time (317) 6% (20) 0% (68) 1% (51) 1% (32) 1% (54) 1% (2) 0%

Writing (235) 4% (13) 0% (66) 1% (49) 1% (8) 0% (29) 1% (1) 0%

Figure 5.2 displays a Heat-Map according to Table 5.2. Heat-Map which is a graphical

representation of the callback methods frequency data across categories; where the

individual values contained in the matrix are represented as colors. The larger values

are represented by relatively darker colors in comparison to smaller values which are

represented by lighter colors. Further, the three dimensional data displayed by the

Heat-Map in terms of activity frequencies across all the categories. The formula for

73

computing the individual values contained in the matrix represented as colors are

based on the percentages of occurrence for the callback method in a category.

FIGURE 5.2: Heat-Map: Distribution of callback methods over the apps categories

The map shows that:

• The highest value is (888) 16% for the onCreate() callback method and category

Internet followed by a value (550) 10% for the onCreate() and category Science &

Education and then value (514) 9% for the onCreate() and category Multimedia.

• The lowest values for the onRestart() callback method across all categories.

• The most frequent use is for Internet category at all callback methods followed

by Multimedia then Science & Education.

5.2 Usage of System’s Resources

The second part of the analyzing process was finding the usage of the system’s re-

sources. The usage of system’s resources was considered the occurrence of system’s

74

resources in the dataset. Moreover, managing (acquiring and releasing) system’s re-

sources. In this section, the percentages of the system’s resource usage were shown.

5.2.1 Occurrence of the system’s resources

In this section, the focus was on finding the occurrence (persistence) of the system’s

resources into the dataset. Then, the result was also shown the persistence of the

system’s resources in relation to the app categories.

5.2.1.1 Percentages of system’s resources occurrence over the dataset

Resource Analyzer was run to find the occurrences of each system’s resources over

5577 activities. The result was shown in Table 5.3.

TABLE 5.3: Distribution of system’s resources over the dataset

Resource #occurrence

Database (52) 0.93%

Sensor (26) 0.46%

Camera (21) 0.37%

USB (19) 0.34%

Input (18) 0.32%

Audio (15) 0.26%

Network (13) 0.23%

GPS (9) 0.16%

Bluetooth (5) 0.08%

Total (178) 3%

Table 5.3 shows the Number and Percentages of Occurrences (#occurrence) for each

system’s resources founds in the dataset. The analyzer was run over nine resources

which are Camera, Audio, Bluetooth, Database, GPS, Input, Network, Sensor, and USB.

The total number of the resource is (178) 3% over 5577 activities. Figure 5.3 shows

Column Chart which represents #occurrence of each system’s resource.

75

FIGURE 5.3: Column Chart: Distribution of system’s resources over the dataset

The Column Chart shows that:

• The most popular system’s resource occurrence used by developers is Database

equals to (52) 0.93% followed by Sensors equals to (26) 0.46% and Camera equals

to (21) 0.37%.

• The lowest popular system’s resource occurrence used by developers is Blue-

tooth equals to (5) 0.08%.

5.2.1.2 Percentages of system’s resources occurrence over the apps categories

Further, in this section, the analysis of system’s resource occurrence was presented

in relation to the categories of the Android apps. The counts and percentages of the

system’s resources were shown according to the app categories distribution in Table

5.4.

76

TABLE 5.4: Distribution of system’s resources over the apps categories

Category Database Sensor Camera USB Input Audio Network GPS Bluetooth

Connectivity (0) 0% (1) 0.02% (1) 0.02% (1) 0.02% (0) 0% (2) 0.04% (5) 0.09% (0) 0% (2) 0.04%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (4) 0.07% (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (0) 0% (1) 0.02%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (3) 0.05% (1) 0.02% (2) 0.04% (1) 0.02% (5) 0.09% (1) 0.02% (2) 0.04% (0) 0% (0) 0%

Money (8) 0.14% (0) 0% (9) 0.16% (1) 0.02% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (17) 0.30% (3) 0.05% (4) 0.07% (14) 0.25% (2) 0.04% (6) 0.10% (0) 0% (0) 0% (0) 0%

Navigation (1) 0.02% (11) 0.20% (0) 0% (0) 0% (1) 0.02% (0) 0% (3) 0.05% (8) 0.14% (0) 0%

Phone & SMS (0) 0%% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (1) 0.02% (2) 0.04% (0) 0% (0) 0% (2) 0.04% (0) 0% (2) 0.04% (0) 0% (0) 0%

Science & Education (8) 0.14% (1) 0.02% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 0.02%

Security (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (1) 0.02% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 0.04% (0) 0% (1) 0.02% (1) 0.02%

System (2) 0.04% (0) 0% (2) 0.04% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0%

Writing (4) 0.07% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.4 was represented in Figure 5.4. Figure 5.4 displays a Column-Map which is

a graphical representation of the system’s resources frequency data across categories

where the individual values contained in the matrix are represented as column. The

larger values are represented by relatively high columns in comparison to smaller

values which are represented by lighter columns. The three dimensional data dis-

played by the Column-Map in terms of activity frequencies across all the categories.

The formula for computing the individual values contained in the matrix represented

as columns is the percentages of occurrence for the system’s resources in categories.

77

FIGURE 5.4: Column-Map: Distribution of system’s resources over the apps categories

The Column-Map shows that:

• The highest value is (17) 0.30% for Database system resource and category Multi-

media followed by a value (14) 0.25% for USB and category Multimedia then (11)

0.20% for Sensor and (8) 0.14% for GPS at category Navigation.

• The lowest values for Bluetooth resource across all categories.

• The most frequent use for Database resources in Multimedia category.

5.2.2 Managing system’s resources

Managing system’s resources give researchers indication about how developers deal

with acquiring and releasing system’s resources during the activity’s lifecycle. In

this section, the other information was extracted in the analysis was to find the most

popular acquired and released recourse in the callback methods.

5.2.2.1 Percentages of acquiring system’s resources

The Resource Analyzer was run In order to find the most popular acquired resources.

The results of this analysis were shown in Table 5.5.

78

TABLE 5.5: Distribution of acquired system’s resources

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

DataBase (44) 85% (0) 0% (4) 8% (4) 8% (0) 0% (8) 15% (0) 0% (35) 67%

Sensor (26) 100% (0) 0% (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (1) 4%

Camera (4) 19% (1) 5% (7) 33% (0) 0% (0) 0% (0) 0% (0) 0% (17) 81%

USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Input (6) 33% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Audio (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

GPS (1) 11% (0) 0% (1) 11% (0) 0% (0) 0% (0) 0% (0) 0% (1) 11%

Bluetooth (2) 40% (1) 20% (1) 20% (0) 0% (0) 0% (1) 20% (0) 0% (2) 40%

Table 5.5 shows the most popular callback methods that used by developers to ac-

quire each resource. The result set was also represented in Figure 5.5.

FIGURE 5.5: Column Chart: Distribution of acquired system’s resources

The results show that:

• Database was acquired mostly on the onCreate() callback method with the per-

centage of occurrence equal to 85% over 52 activities which used Database re-

source. Also, 8% used the onPause(), 8% the onResume(), and 15% used the

onDestroy(). Whereas, around 67% of activities acquired Database on OTHER

methods.

79

• Sensor was acquired on the onCreate() method with the percentage of occur-

rence equal to 100% over 26 activities which used Sensor resource. Also, 8%

used by the onResume(). Whereas, around 4% of activities acquired Sensor on

OTHER methods.

• Camera was acquired mostly on OTHER methods with the percentage of occur-

rence equal to 81% over 29 activities which used Camera resource. Also, 33%

used the onResume(), 19% used the onCreate(), and 5% used the onStart().

• Input was acquired mostly on the onCreate() with the percentage of occurrence

equal to 33% over 18 activities which used Input resource.

• GPS used 11%s of activities over 9 activities which acquired GPS resource in the

onCreate(), onResume() and OTHER methods.

• Bluetooth was acquired mostly on the onCreate() and OTHER methods callback

methods with percentage of occurrence equal to 40% over 5 activities which

used Bluetooth resource. Also, 20%s used the onStart(), onResume(), and onDe-

stroy().

• USB, Audio, and Network resources had nothing of the percentages of acquired.

5.2.2.2 Percentages of releasing system’s resources

The same as 5.2.2.1 sub section, Resource Analyzer was run In order to find the most

popular released resources. The results of this analysis were shown in Table 5.6.

80

TABLE 5.6: Distribution of released system’s resources

Resource onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Database (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (8) 15% (0) 0% (0) 0%

Sensor (1) 4% (0) 0% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (1) 4%

Camera (1) 5% (0) 0% (2) 10% (12) 57% (1) 5% (3) 14% (0) 0% (12) 57%

USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Input (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Audio (7) 47% (0) 0% (0) 0% (3) 20% (0) 0% (1) 7% (0) 0% (2) 13%

Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

GPS (1) 11% (0) 0% (0) 0% (1) 11% (0) 0% (1) 11% (0) 0% (1) 11%

Bluetooth (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.6 shows the results of the most popular callback method used to release re-

sources. It was represented in Figure 5.6.

FIGURE 5.6: Column Chart: Distribution of released system’s resources

The results show that:

• Database was released mostly on the onDestroy() callback method with the per-

centage of occurrence equal to 15% over 52 activities which used Database re-

source. Also, 4% used the onPause().

• Sensor used 4%s of activities over 26 activities which released the onCreate(),

onPause(), and OTHER methods.

81

• Camera was released mostly on the onPause() method with the percentage of

occurrence equal to 57% over 29 activities which used Camera resource. Also,

5% used the onCreate(), 10% used the onResume(), 5% used the onStart(),14%

used the onDestroy(). whereas, around 57% of activities released Camera on

OTHER methods.

• Audio was released mostly on the onCreate() with the percentage of occurrence

equal to 47% over 18 activities which used Audio resource. Also, 20% used the

onPause() and 7% used the onDestroy(). Whereas, around 13% of activities re-

leased Audio on OTHER methods.

• GPS used 11%s of activities over 9 activities which released GPS resource in the

onCreate(), onPause(), onDestroy() and OTHER methods.

• USB, Input, Network and Bluetooth resources had nothing of the percentages of

released.

5.2.2.3 Correctly/Wrongly acquired and released system’s resources over the dataset

In order to obtain more supportive results, the correctly acquired and released per-

centages were decided depending on the Android documentation information at Ta-

ble A.1. For each system’s resources, the callback methods which are responsible to

acquire and release resource were decided. Then, the value of percentages of these

callback methods were decided as the correctly percentages of acquired and released

the resource. On the other hands, the average of wrongly acquired and released per-

centages was computed by finding the averages of the callback methods percentages

that registered acquired and released percentages and did not have a responsibility

to do that. Table 5.7 shows these comparisons of correctly/wrongly acquired and

released percentages of the system’s resources.

82

TABLE 5.7: Distribution of correctly/wrongly acquired and released system’s resources

Resource Correctly acquired
Average of

wrongly acquired
Correctly released

Average of

wrongly released

Database 85% on onCreate() 25% 4% on onPause() 15%

Sensor 8% on onResume() 52% 4% on onPause() 4%

Camera 33% on onResume() 35% 57% on onPause() 18%

USB 0% on onResume() 0% 0% on onPause() 0%

Input 33% on onCreate() 0% 0% on onPause() 0%

Audio 0% on onCreate() 0% 20% on onPause() 22%

Network 0% on onCreate() 0% 0% on onPause() 0%

GPS 11% on onCreate() 11% 11% on onPause() 11%

Bluetooth 40% on onCreate() 25% 0% on onPause() 0%

Total Average 23% 16% 11% 8%

The result set of correctly/wrongly acquired percentages was represented in Figure

5.7. Whereas, The result set of correctly and wrongly released percentages was repre-

sented in Figure 5.8.

FIGURE 5.7: Column Chart: Distribution of correctly/wrongly acquired system’s resources

83

FIGURE 5.8: Column Chart: Distribution of correctly/wrongly released system’s resources

Our findings of the correctly/wrongly usage’s percentages of the system’s resource

as shown in Table 5.7 and Figures 5.7 and 5.8:

• Database resource should be acquired at onCreate() and released at onPause()

methods [17]. Our result shows that about 85% activities used onCreate() to

acquire Database resource and 4% of activities used onPause() to release Database

resource correctly. However, the average of wrongly acquired is equal to 25%.

It includes 67% of activities used OTHER method, 15% used onDestroy() and

8% used onResume() or onPause() to acquire Database resource. Additionally,

the average of wrongly released is equal to 15% of activities used onDestroy()

to release Database resource.

• Sensor resource should be acquired at onResume() and released at onPause()

[17]. Our result shows that about 4% of activities used onResume() to acquire

Sensor resource and 4% of activities used onPause() to release Sensor resource

correctly. However, the average of wrongly acquired is equal to 52%. It includes

100% of activities used onCreate() method and 4% used OTHER to acquire Sen-

sor resource. Additionally, the average of wrongly released is equal to 4%. It

includes 4% of activities used onCreate() method, and also 4% used OTHER to

release Sensor resource.

84

• Camera resource should be acquired at onResume() and released at onPause()

[17]. Our result shows that about 33% of activities used onResume() to acquire

Camera resource and 57% of activities used onPause () to release Camera resource

correctly. However, the average of wrongly acquired is equal to 35%. It in-

cludes 81% of activities used OTHER method, 19% used onCreate() and 5%

used onStart() to acquire Camera resource. Additionally, the average of wrongly

released is equal to 13%. It includes 14% of activities used onDestroy() and 57%

used OTHER method to release Camera resource.

• USB should be acquired at onResume() and released at onPause() [17]. Our

result showed there are no occurrences of acquired or released USB resource in

our dataset.

• Input resource should be acquired at onCreate() and released at onPause() [17].

Our result showed that about 33% of activities used onResume() to acquire Input

resource. However, there are no occurrences of released Input resource in our

dataset.

• Audio resource should be acquired at onCreate() and released at onPause() [17].

Our result showed that there are no occurrences of acquired Audio resource at

onCreate() in our dataset, and 20% of activities used onPause() to release Audio

resource correctly. However, the average of wrongly released is equal to 30%.

It includes 47% of activities used onCreate() method,7% used onDestroy() and

13% used OTHER to release Audio resource.

• Network resource should be acquired at onCreate() and released at onPause()

[17]. Our result showed that there are no occurrences of the acquired or released

Network resource in our dataset.

• GPS resource should be acquired at onCreate() and released at onPause() [17].

85

Our result showed that about 11% of activities used onCreate() to acquired and

also11% of activities used onPause() released GPS resource correctly. However,

the average of wrongly acquired is equal to 11%. It includes 11% of activities

used onResume() method and 11% used OTHER to acquire GPS resource. Ad-

ditionally, the average of wrongly released is equal to 11%. It includes 11%

of activities used onCreate()method and 11% used OTHER to release GPS re-

source.

• Bluetooth resource should be acquired at onCreate() and released at onPause()

[17]. Our result showed that about 40% of activities used onCreate() to acquire

Bluetooth resource correctly and there are no occurrences of released Bluetooth re-

source at onPause() method. However, the average of wrong acquired is equal

to 25%. It includes 40% of activities 40% used OTHER method , 20% used on-

Pause() and onResume() to acquire Bluetooth resource.

5.2.2.4 Correctly/Wrongly acquired and released system’s resources over the apps

categories

In this section, the percentages of correctly/wrongly acquired and released for each

system’s resources in relation to the app categories was shown. For each system’s

resource, the percentages were computed according to app categories distribution.

5.2.2.4.1 Camera system’s resource Camera is a system’s resource that is shared by

apps on Android mobile devices [40]. It provides APIs that’s offered Camera features

available on mobile devices. This feature allowing user to capture pictures and videos

in Android apps. Android apps can make use of Camera resource after getting an

instance of Camera APIs. These APIs are :

86

• android.hardware.camera2: This API used for taking pictures and video in apps

which used Camera system’s resource. It works on Android 5.0 and greater

versions. It uses open() to create an instance of the Camera or startPreview()

methods to start Camera preview. Also, it uses release() to release the Camera

resource or stopPreview() to stop Camera preview.

• android.hardware.camera: This is the old Camera API which used to control

Camera system’s resource.

• android.hardware.camera.CameraDevice or

android.hardware.camera2.CameraDevice: These are implementation of a sin-

gle Camera that connected to an Android device, which allowing for fine-grain

control of image capture. It uses openCamera() or onOpened() methods to

to open/acquire connection to Camera resource. Also, They use close() or on-

Closed() to release Camera resource.

• android.hardware.camera.CameraManager or

android.hardware.camera2.CameraManager: These are system service managers

which use for detecting, characterizing, and connecting to CameraDevices.They

use openCamera() or onOpened() methods to open/acquire connection to Cam-

era resource. Also, its use close() or onClosed() to release Camera resource.

(1) Acquiring Camera system’s resource:

Android apps which use an instance of Camera resource to create the camera object

or access a particular hardware camera when the app starts using it [40]. Apps must

acquire/open the Camera resource inside onResume() callback method. The process

of opening/acquiring may take a long time to finish on some mobile devices. It is

best to call these process camera from a worker thread to prevent blocking the main

app UI thread. For example, in case a developer uses an instance Camera resource

87

API, the Camera.startPreview() method will be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquired Camera system’s resource per-

centages result were obtained as shown in the following Table 5.8.

TABLE 5.8: Distribution of acquired Camera system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (2) 10% (1) 5% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 10%

Money (1) 5% (0) 0% (5) 24% (0) 0% (0) 0% (0) 0% (0) 0% (6) 29%

Multimedia (1) 5% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (2) 10% (0) 0% (0) 0% (0) 0% (0) 0% (6) 29%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

88

Table 5.8 shows the distribution of the acquired Camera across the app categories.

Each value represents the count and percentage of occurrence of the acquired Camera

over 21 existence of Camera system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.9.

FIGURE 5.9: Bar Chart: Distribution of acquired Camera resource over the app Categories

As shown in Figure 5.9, the Money category is the most frequent use for acquiring

Camera followed by Phone & SMS then Internet. However, in order to give our indica-

tion, the average of wrongly acquired was competed to compare it with the correctly

acquired result as shown in Table 5.9.

89

TABLE 5.9: Distribution of correctly/wrongly acquired Camera system’s resource

Category correctly acquired
Average of

wrongly acquired

Connectivity 0% on onResume() 0%

Development 0% on onResume() 0%

Games 0% on onResume() 0%

Graphics 0% on onResume() 0%

Internet 0% on onResume() 8%

Money 24% on onResume() 17%

Multimedia 0% on onResume() 5%

Navigation 0% on onResume() 0%

Phone & SMS 10% on onResume() 29%

Reading 0% on onResume() 0%

Science & Education 0% on onResume() 5%

Security 0% on onResume() 0%

Sports & Health 0% on onResume() 0%

System 0% on onResume() 5%

Theming 0% on onResume() 0%

Time 0% on onResume() 0%

Writing 0% on onResume() 0%

Total Average 33% on onResume() 68%

Table 5.9 was represented in Figure 5.10.

FIGURE 5.10: Column Chart: Distribution of correctly/wrongly acquired Camera resource
over the app categories

The compared results in Figure 5.10 showed that:

• The percentage of correctly acquired on onResume() callback method for the

Camera is 24% at Money category, whereas the wrongly percentage is 17%.

90

• The percentage of correctly acquired on onResume() callback method for the

Camera is 10% at Phone & SMS, whereas the wrongly percentage is 29%.

• The percentages of wrongly acquired of the Camera are 8% at Internet, and 5%s

at Multimedia, Science & Education and system categories whereas there are no

correctly acquired.

• In the remaining categories, there are no occurrence for acquired Camera re-

source.

• The total average of the correctly acquired percentages in onResume() callback

method for the Camera in all categories is 33%, whereas the total of the wrongly

acquired percentages is 68%.

(2) Releasing camera system’s resource:

Android apps use an instance of Camera resource must be particularly careful to re-

lease the camera object when the app stops using it [40]. This occurs as soon as an

app -activity- is paused , activity calls onPause() callback method. So, If Android apps

does not properly release the Camera resource inside onPause(), all features attempts

to access the Camera inside the apps and other apps will fail, throw a RuntimeExcep-

tion and may cause these to be shut down. For example, in case a developer uses

an instance of the Camera, the Camera.release() method will be used as shown in the

code bellow:

91

After analyzing 5577 Android activities, the releasing Camera system’s resource per-

centages result were obtained as shown in the following Table 5.10.

TABLE 5.10: Distribution of released Camera system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (1) 5% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5%

Money (0) 0% (0) 0% (0) 0% (8) 38% (0) 0% (1) 5% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (2) 10% (1) 5% (1) 5% (0) 0% (2) 10%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (2) 10% (2) 10% (0) 0% (0) 0% (0) 0% (6) 29%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 5%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 10%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.10 shows the distribution of the released Camera across the app categories.

Each value represents the count and percentage of occurrence of the released Camera

92

over 21 existence of Camera system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.11.

FIGURE 5.11: Bar Chart: Distribution of released Camera resource over the app categories

As shown in Figure 5.11, the Phone & SMS category is the most frequent use for re-

leasing Camera followed by Money then Multimedia. However, in order to give our

indication, the average of wrongly released was competed to compare it with the

correctly released result as shown in Table 5.11.

93

TABLE 5.11: Distribution of correctly/wrongly released Camera system’s resource

Category correctly released
Average of

wrongly released

Connectivity 0% on onPause() 5%

Development 0% on onPause() 0%

Games 0% on onPause() 0%

Graphics 0% on onPause() 0%

Internet 0% on onPause() 5%

Money 38 % on onPause() 5%

Multimedia 10% on onPause() 5%

Navigation 0% on onPause() 0%

Phone & SMS 10% on onPause() 19%

Reading 0% on onPause() 0%

Science & Education 0% on onPause() 5%

Security 0% on onPause() 0%

Sports & Health 0% on onPause() 0%

System 0% on onPause() 10%

Theming 0% on onPause() 0%

Time 0% on onPause() 0%

Writing 0% on onPause() 0%

Total Average 57% on onPause() 53%

Table 5.11 was represented in Figure 5.12.

FIGURE 5.12: Column Chart: Distribution of correctly/wrongly released Camera resource
over the app categories

The compared results as shown in Figure 5.12 showed that:

• The percentage of correctly released on onPause() callback method for the Cam-

era is 10% at Phone & SMS category, whereas the wrongly percentage is 19%.

94

• The percentage of correctly released on onPause() callback method for the Cam-

era is 38% at Money category, whereas the wrongly percentage is 5%.

• The percentage of correctly released on onPause() callback method for the Cam-

era is 10% at Multimedia category, whereas the wrongly percentage is 5%.

• The percentages of wrongly released for the Camera are 10% at System and 5%s

at Science & Education, Internet and connectivity categories, whereas there are no

correctly released.

• In the remaining categories, there are no occurrence for released Camera re-

source.

• The total average of the correctly released percentages on onPause() callback

method for the Camera in all categories is 57%, whereas the total of the wrongly

released percentages is 53%.

5.2.2.4.2 Database System’s Resource Database system’s resource was implemented

to explore data returned through a content provider [41]. Android apps can use

Database resource after getting an instance of SQLite APIs. These APIs are:

• android.database.sqlite.SQLiteDatabase: This API offers developers, accessibil-

ity to manage SQLite database and perform common database management

tasks such as create, delete, execute SQL commands. It uses openDatabase() or

openOrCreateDatabase() methods to open a connection to Database resource.

• android.database.sqlite.SQLiteClosable: This API used to close an object cre-

ated from a SQLiteDatabase. Also, it uses close(), releaseMemory(), releaseRef-

erence() and

releaseReferenceFromContainer() methods to close Database connection through

releasing a reference to the object.

95

(1) Acquiring the database system recourse:

Android apps which use an instance of Database resource to create the SQLite object

when the app starts using it [41]. As our study of database resource, Apps must

acquire/open Database resource inside onCreate() callback method [42]. This help

ensuring that don’t have to create a new on each resume and also have only one

Database when an Activity is resumed and paused. For example, in case a developer

uses an instance of the SQLiteDatabase API, the SQLiteDatabase.openDatabase(...)

method will be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquiring Database system’s resource per-

centages result were obtained as shown in the following Table 5.12.

96

TABLE 5.12: Distribution of acquired Database system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (4) 8% (0) 0% (1) 2% (2) 4% (0) 0% (4) 8% (0) 0% (3) 6%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (3) 6% (0) 0% (1) 2% (0) 0% (0) 0% (2) 4% (0) 0% (3) 6%

Money (8) 15% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (17) 33% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (13) 25%

Navigation (1) 2% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 2%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (1) 2% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (2) 4% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (5) 10%

Security (4) 8% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (4) 8%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (2) 4% (0) 0% (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (1) 2%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (2) 4% (0) 0% (2) 4% (2) 4% (0) 0% (0) 0% (0) 0% (5) 10%

Table 5.12 shows the distribution of the acquired Database across the app categories.

Each value represents the count and percentage of occurrence of the acquired Database

over 52 existence of Database system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.13.

FIGURE 5.13: Bar Chart: Distribution of acquired Database resource over the app categories

97

As shown in Figure 5.13, the Multimedia category is the most frequent use for acquir-

ing Database followed by Games then Writing. However, in order to give our indica-

tion, the average of wrongly acquired was competed to compare it with the correctly

acquired result as shown in Table 5.13.

TABLE 5.13: Distribution of correctly/wrongly acquired Database system’s resource

Category correctly acquired
Average of

wrongly acquired

Connectivity 0% on onCreate() 0%

Development 0% on onCreate() 0%

Games 8% on onCreate() 5%

Graphics 0% on onCreate() 0%

Internet 6% on onCreate() 4%

Money 15% on onCreate() 0%

Multimedia 33% on onCreate() 25%

Navigation 2% on onCreate() 2%

Phone & SMS 0% on onCreate() 0%

Reading 2% on onCreate() 0%

Science & Education 4% on onCreate() 10%

Security 8% on onCreate() 8%

Sports & Health 0% on onCreate() 0%

System 4% on onCreate() 3%

Theming 0% on onCreate() 0%

Time 0% on onCreate() 0%

Writing 4% on onCreate() 6%

Total Average 85% on onCreate() 62%

Table 5.13 was represented in figure 5.14.

FIGURE 5.14: Column Chart: Distribution of correctly/wrongly acquired Database resource
over the app categories

The compared results in Figure 5.14 showed that:

98

• The percentage of correctly acquired on onCreate() callback method for the

Database is 33% at Multimedia category, whereas the wrongly percentage is 25%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 8% at Games, whereas the wrongly percentage is 5%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 6% at Internet, whereas the wrongly percentage is 4%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 2% at Navigation, whereas the wrongly percentage is also 2%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 4% at Science & Education, whereas the wrongly percentage is 10%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 8% at Security, whereas the wrongly percentage is also 8%

• The percentage of correctly acquired on onCreate() callback method for the

Database is 4% at System, whereas the wrongly percentage is 3%.

• The percentage of correctly acquired on onCreate() callback method for the

Database is 4% at Writing, whereas the wrongly percentage is 10%.

• The percentages of correctly acquired of the Database are 15% at Money and 2%

at Reading, whereas there are no wrongly acquired.

• In the remaining categories, there are no occurrence for acquired Database re-

source.

• The total average of the correctly acquired percentages on onCreate() callback

method for Database in all categories is 85%, whereas the total of the wrongly

acquired percentages is 62%.

(2) Releasing the database system recourse:

99

Android apps use an instance of SQLiteDatabase API must be particularly careful to

release the database object when the app stops using it [42]. Developers use onPause()

callback method to close Database connection. For example, in case a developer uses

an instance of the SQLiteDatabase API. the SQLiteDatabase.close() method will be

used as shown in the code bellow:

After analyzing 5577 Android activities, the releasing Database system’s resource per-

centages result were obtained as shown in the following Table 5.14.

TABLE 5.14: Distribution of released Database system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (4) 8% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (0) 0% (0) 0% (0) 0%

100

Table 5.14 shows the distribution of the released Database across the app categories.

Each value represents the count and percentage of occurrence of the released Database

over 52 existence of Database system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.15.

FIGURE 5.15: Bar Chart: Distribution of released Database resource over the app categories

As shown in Figure 5.15, the Games category is the most frequent use for releasing

Database followed by System and Internet. However, in order to give our indication,

the average of wrongly released was competed to compare it with the correctly re-

leased result as shown in Table 5.15.

101

TABLE 5.15: Distribution of correctly/wrongly released Database system’s resource

Category correctly released
Average of

wrongly released

Connectivity 0% on onPause() 0%

Development 0% on onPause() 0%

Games 0% on onPause() 8%

Graphics 0% on onPause() 0%

Internet 0% on onPause() 4%

Money 0% on onPause() 0%

Multimedia 0% on onPause() 0%

Navigation 0% on onPause() 0%

Phone & SMS 0% on onPause() 0%

Reading 0% on onPause() 0%

Science & Education 0% on onPause() 0%

Security 0% on onPause() 0%

Sports & Health 0% on onPause() 0%

System 0% on onPause() 4%

Theming 0% on onPause() 0%

Time 0% on onPause() 0%

Writing 4% on onPause() 0%

Total Average 4% on onPause() 16%

Table 5.15 was represented in Figure 5.16.

FIGURE 5.16: Column Chart: Distribution of correctly/wrongly released Database resource
over the app categories

The compared results in Figure 5.16 showed that:

• The percentages of wrongly released of the Database on onPause() callback method

are 8% at Games, 4% at , Internet and 4% at and System, whereas there are no cor-

rectly released.

102

• The percentage of wrongly released of the Database is 4% at Writing, whereas

there are no correctly released.

• In the remaining categories, there are no occurrence for released Database re-

source.

• The total average of the correctly released percentages on onPause() callback

method for the Database in all categories is 4%, whereas the total of the wrongly

released percentages is 16%.

5.2.2.4.3 Sensor System’s Resource Sensor system’s resource is built in power mo-

bile apps to compute motion , orientation and other environmental condition [43].

Developers can access to Sensor resource thorough the Sensor framework

"android.hardware.Sensor".This framework helps developers perform a variety of

sensor tasks such as deciding available sensors on a device, decide capabilities of

the sensor’s, such as power requirements, maximum range, resolution, and manufac-

turer, acquire sensor raw data, monitor sensor change through register and unregister

sensor event listeners.

The Sensor framework uses to create an instance of Sensor resource and let developers

determine the capabilities of a sensor [43]. It includes also "android.hardware.SensorManager"

API which lets developer access the device’s sensors by creating instance of sensor

service. Its various methods for accessing and listing sensors, registering and unreg-

istering sensor event listeners, and acquiring orientation information. These methods

are registerListener(), getsystemservice () or start() to acquire/open Sensor resource

and unregisterListener() or stop() to release Sensor resource.

(1) Acquiring Sensor system’s resource:

Android apps which use an instance of Sensor resource to create the sensor object or

access a particular hardware sensor when the app starts using it [43]. Apps must

103

acquire/open the Sensor resource inside onResume() callback method. For exam-

ple, in case a developer uses an instance of the SensorManager API, the SensorMan-

ager.registerListener(..) method will be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquiring Sensor system’s resource per-

centages result were obtained as shown in the following Table 5.16.

TABLE 5.16: Distribution of acquired Sensor system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (5) 19% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (1) 4% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (3) 12% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (10) 38% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (0) 0% (1) 4%

Phone & SMS (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (1) 4% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.16 shows the distribution of the acquired Sensor across the app categories.

Each value represents the count and percentage of occurrence of the acquired Sensor

104

over 26 existence of Sensor system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.17.

FIGURE 5.17: Bar Chart: Distribution of acquired Sensor resource over the app categories

As shown in Figure 5.17, the Navigation category is the most frequent use for acquiring

Sensor followed by Games. However, in order to give our indication, the average of

wrongly acquired was competed to compare it with the correctly acquired result as

shown in Table 5.17.

105

TABLE 5.17: Distribution of correctly/wrongly acquired Sensor system’s resource

Category correctly acquired
Average of

wrongly acquired

Connectivity 0% on onResume() 8%

Development 0% on onResume() 0%

Games 0% on onResume() 19%

Graphics 0% on onResume() 0%

Internet 4% on onResume() 4%

Money 0% on onResume() 0%

Multimedia 0% on onResume() 12%

Navigation 4% on onResume() 21%

Phone & SMS 0% on onResume() 8%

Reading 0% on onResume() 8%

Science & Education 0% on onResume() 0%

Security 0% on onResume() 0%

Sports & Health 0% on onResume() 0%

System 0% on onResume() 0%

Theming 0% on onResume() 0%

Time 0% on onResume() 4%

Writing 0% on onResume() 0%

Total average 8% on onResume() 83%

Table 5.17 was represented in Figure 5.18.

FIGURE 5.18: Column Chart: Distribution of correctly/wrongly acquired Sensor resource
over the app categories

The compared results in Figure 5.18 showed that:

• The percentage of correctly acquired on onResume() callback method for the

Sensor is 4% at Navigation category, whereas the wrongly percentage is 21%.

106

• The percentage of correctly acquired on onResume() callback method for the

Sensor is 4% at Internet, whereas the wrongly percentage is also 4%.

• The percentages of wrongly acquired of the Sensor are 8% at Connectivity, 19%

at Games, 12% at Multimedia, 8% at Phone & SMS, 8% at Reading and 4% at Time

categories, whereas there are no correctly acquired.

• In the remaining categories, there are no occurrence for acquired Sensor re-

source.

• The total average of the correctly acquired percentages on onResume() callback

method for the Sensor in all categories is 8%, whereas the total of the wrongly

acquired percentages is 83%.

(2) Releasing Sensor system’s resource:

Android apps used an instance of Sensor resource must be particularly careful to re-

lease the sensor object when the app stops using it [43]. This occurs as soon as an app

-activity- is paused , activity calls onPause() callback method. So, If Android apps

does not properly release the Sensor resource inside onPause() may cause these to be

shut down. For example, in case a developer uses an instance of the SensorManager

API, the

SensorManager.unregisterListener(this) method will be used as shown in the code

bellow:

107

After analyzing 5577 Android activities, the releasing Sensor system’s resource per-

centages result were obtained as shown in the following Table 5.18.

TABLE 5.18: Distribution of released Sensor system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (1) 4% (0) 0% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (1) 4%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.18 shows the distribution of the released Sensor across the app categories.

Each value represents the count and percentage of occurrence of the released Sensor

over 26 existence of Sensor system’s resource inside 5577 activities. The result was

represented in Bar Chart in Figure 5.19.

108

FIGURE 5.19: Bar Chart: Distribution of released Sensor resource over the app categories

As shown in Figure 5.19, the Navigation category is the most frequent use for releasing

Sensor. However, In order to give our indication, the average of wrongly acquired was

competed to compare it with the correctly released result as shown in Table 5.19.

TABLE 5.19: Distribution of correctly/wrongly released Sensor system’s resource

Category correctly released
Average of

wrongly released

Connectivity 0% on onPause() 0%

Development 0% on onPause() 0%

Games 0% on onPause() 0%

Graphics 0% on onPause() 0%

Internet 0% on onPause() 0%

Money 0% on onPause() 0%

Multimedia 0% on onPause() 0%

Navigation 4% on onPause() 4%

Phone & SMS 0% on onPause() 0%

Reading 0% on onPause() 0%

Science & Education 0% on onPause() 0%

Security 0% on onPause() 0%

Sports & Health 0% on onPause() 0%

System 0% on onPause() 0%

Theming 0% on onPause() 0%

Time 0% on onPause() 0%

Writing 0% on onPause() 0%

Total Average 4% on onPause() 4%

Table 5.19 was represented in Figure 5.20.

109

FIGURE 5.20: Column Chart: Distribution of correctly/wrongly released Sensor resource over
the app categories

The compared results as shown in Figure 5.20 showed that:

• The percentage of correctly released on onPause() callback method for the Sensor

is 4% at Navigation category, whereas the wrongly percentage is also 4%.

• In the remaining categories, there are no occurrence for released Sensor resource.

• The total average of the correctly released percentages on onPause() callback

method for the Sensor in all categories is 4%, whereas the total of the wrongly

released percentages is also 4% .

5.2.2.4.4 GPS System’s Resource GPS system’s resource is used to define Android

location and related services [44]. It allows apps to be smarter and offer good infor-

mation to the user. Using GPS resource developers can provide and acquire the user

location. GPS resource is most accurate, However its consume the power battery,

only works outdoors and take a lot time to produce the location. Android location

framework offers "android.location.LocationManager" ApI to give developers access

to GPS resource [45]. Developers can acquire a connection to GPS services using

getSystemService(), requestLocationUpdates(), getGpsStatus() and start() methods.

Also, they can release/close GPS resource using removeUpdates(), stop(),release()

110

and cancel().

(1) Acquiring the GPS system’s resource:

Android apps which use an instance of LocationManager API to create the GPS re-

source object. In Android apps, developers must acquire/open the GPS resource

inside onCreate() callback method. For example, in case a developer uses an instance

of the LocationManager API, the LocationManager.getSystemService() method will

be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquiring GPS system’s resource percent-

ages result were obtained as shown in the following Table 5.20.

111

TABLE 5.20: Distribution of acquired GPS system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (1) 11% (0) 0% (1) 11% (0) 0% (0) 0% (0) 0% (0) 0% (1) 11%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.20 shows the distribution of the acquired GPS across the app categories. Each

value represents the count and percentage of occurrence of the acquired GPS over 9

existence of GPS system’s resource inside 5577 activities. The result was represented

in Bar Chart in Figure 5.21.

FIGURE 5.21: Bar Chart: Distribution of acquired GPS resource over the app categories

112

As shown in Figure 5.21, the Sports & Health category is the most frequent use for

acquiring GPS. However, in order to give our indication, the average of wrongly ac-

quired was competed to compare it with the correctly acquired result as shown in

Table 5.21.

TABLE 5.21: Distribution of correctly/wrongly acquired GPS system’s resource

Category correctly acquired
Average of

wrongly acquired

Connectivity 0% on onCreate() 0%

Development 0% on onCreate() 0%

Games 0% on onCreate() 0%

Graphics 0% on onCreate() 0%

Internet 0% on onCreate() 0%

Money 0% on onCreate() 0%

Multimedia 0% on onCreate() 0%

Navigation 0% on onCreate() 0%

Phone & SMS 0% on onCreate() 0%

Reading 0% on onCreate() 0%

Science & Education 0% on onCreate() 0%

Security 0% on onCreate() 0%

Sports & Health 11% on onCreate() 11%

System 0% on onCreate() 0%

Theming 0% on onCreate() 0%

Time 0% on onCreate() 0%

Writing 0% on onCreate() 0%

Total Average 11% on onCreate() 11%

Table 5.21 was represented in Figure 5.22.

FIGURE 5.22: Column Chart: Distribution of correctly/wrongly acquired GPS resource over
the app categories

The compared results in Figure 5.22 showed that:

113

• The percentage of correctly acquired on onCreate() callback method for the GPS

is 11% at Sports & Health category, whereas the wrongly percentage is also 11%.

• In the remaining categories, there are no occurrence for acquired GPS resource.

• The total average of the correctly acquired percentages on onCreate() callback

method for the GPS in all categories is 11%, whereas the total of the wrongly

acquired percentages is also 11%.

(2) Releasing GPS system’s resource:

Android apps used an instance of LocationManager API must be particularly careful

to release the GPS object when the app stops using it [40]. Developers use onPause()

callback method to close GPS connection. For example, in case a developer uses an

instance of LocationManagera API, the LocationManager.removeUpdates() method

will be used as shown in the code bellow:

After analyzing 5577 Android activities, the releasing GPS system’s resource percent-

ages result were obtained as shown in the following Table 5.22.

114

TABLE 5.22: Distribution of released GPS system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (1) 11% (0) 0% (0) 0% (1) 11% (0) 0% (1) 11% (0) 0% (1) 11%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.22 shows the distribution of the released GPS across the app categories. Each

value represents the count and percentage of occurrence of the released GPS over 9

existence of GPS system’s resource inside 5577 activities. The result was represented

in Bar Chart in Figure 5.23.

FIGURE 5.23: Bar Char: Distribution of released GPS resource over the app categories

115

As shown in Figure 5.23, the Sports & Health category is the most frequent use for

releasing GPS. However, in order to give our indication, the average of wrongly re-

leased is competed to compare it with the correctly released result as shown in Table

5.23.

TABLE 5.23: Distribution of correctly/wrongly released GPS system’s resource

Category correctly released
Average of

wrongly released

Connectivity 0% on onPause() 0%

Development 0% on onPause() 0%

Games 0% on onPause() 0%

Graphics 0% on onPause() 0%

Internet 0% on onPause() 0%

Money 0% on onPause() 0%

Multimedia 0% on onPause() 0%

Navigation 0% on onPause() 0%

Phone & SMS 0% on onPause() 0%

Reading 0% on onPause() 0%

Science & Education 0% on onPause() 0%

Security 0% on onPause() 0%

Sports & Health 11% on onPause() 11%

System 0% on onPause() 0%

Theming 0% on onPause() 0%

Time 0% on onPause() 0%

Writing 0% on onPause() 0%

Total Average 11% on onPause() 11%

Table 5.23 was represented in Figure 5.24.

FIGURE 5.24: Column Chart: Distribution of correctly/wrongly released GPS resource over
the app categories

The compared results as shown in Figure 5.24 showed that:

116

• The percentage of correctly released on onPause() callback method for the GPS

is 11% at Sports & Health category, whereas the wrongly percentage is also 11%.

• In the remaining categories, there are no occurrence for acquired GPS resource.

• The total average of the correctly released percentages on onPause() callback

method for the GPS in all categories is 11%, whereas the total of the wrongly

released percentages is also 11%.

5.2.2.4.5 Input System’s Resource Input system’s resource is used to provide in-

formation about Input devices and available key layouts [46]. Input framework pro-

vides

android.hardware.input.InputManager API which lets developers access or acquire

input resources. Developers can acquire Input resource using getsystemservice(),

registerInputDeviceListener(), or start() methods. Also, they can release Input re-

source using unregisterInputDeviceListener() or stop() methods.

(1) Acquiring Input system’s resource:

Android apps which use an instance of InputManager API to create the input object.

Apps must acquire/open the Input resource inside onCreate() callback method. For

example, in case a developer uses an instance of the InputManager API, the Input-

Manager.getsystemservice() method will be called as shown in the code bellow:

117

After analyzing 5577 Android activities, the acquiring Input system’s resource per-

centages result were obtained as shown in the following Table 5.24.

TABLE 5.24: Distribution of acquired Input system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (2) 11% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (1) 6% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (1) 6% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (1) 6% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (1) 6% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.24 shows the distribution of the acquired Input across the app categories. Each

value represents the count and percentage of occurrence of the acquired Input over 18

existence of Input system’s resource inside 5577 activities. The result was represented

in Bar Chart in Figure 5.25.

118

FIGURE 5.25: Bar Chart: Distribution of acquired Input resource over the app categories

As shown in Figure 5.25, Internet category is the most frequent use for acquiring In-

put. However, in order to give our indication, the average of wrongly acquired was

competed to compare it with the correctly acquired result as shown in Table 5.25.

TABLE 5.25: Distribution of correctly/wrongly acquired Input system’s resource

Category correctlyly acquired
Average of

wronglyly acquired

Connectivity 0% on onCreate() 0%

Development 0% on onCreate() 0%

Games 0% on onCreate() 0%

Graphics 0% on onCreate() 0%

Internet 11% on onCreate() 0%

Money 0% on onCreate() 0%

Multimedia 6% on onCreate() 0%

Navigation 6% on onCreate() 0%

Phone & SMS 0% on onCreate() 0%

Reading 6% on onCreate() 0%

Science & Education 0% on onCreate() 0%

Security 0% on onCreate() 0%

Sports & Health 0% on onCreate() 0%

System 6% on onCreate() 0%

Theming 0% on onCreate() 0%

Time 0% on onCreate() 0%

Writing 0% on onCreate() 0%

Total Average 33% on onCreate() 0%

Table 5.25 was represented in Figure 5.26.

119

FIGURE 5.26: Column Chart: Distribution of correctly/wrongly acquired Input resource over
the app categories

The compared results in Figure 5.26 showed that:

• The percentages of correctly acquired of the Input are 11% at Internet, and 6%s

at Multimedia, Navigation, Reading and System categories, whereas there are no

wrongly acquired.

• In the remaining categories, there are no occurrence for acquired Input resource.

• The total average of the correctly acquired percentages on onCreate() callback

method for the Input in all categories is 33%, whereas the total of the wrongly

acquired percentages is 0%.

(2) Releasing Input system’s resource:

Android apps which used an instance of InputManager API must be particularly

careful to release the input object when the app stops using it [46]. Developers use on-

Pause() callback method to close input connection. For example, in case a developer

uses an instance of the InputManager API, the InputManager.unregisterInputDeviceListener()

method will be used as shown in the code bellow:

120

After analyzing 5577 Android activities, the releasing Input system’s resource per-

centages result were obtained as shown in the following Table 5.26. Table 5.26 shows

the distribution of the released Input across the app categories. Each value represents

the count and percentage of occurrence of the released Input over 18 existence of In-

put system’s resource inside 5577 activities. It shows that there are no occurrence for

released Input resource in all app categories.

TABLE 5.26: Distribution of released Input system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

121

5.2.2.4.6 Bluetooth System’s Resource Bluetooth resource provides developers a

framework to manage Bluetooth functionality [47]. These functionality such as, scan-

ning for and connecting with devices also managing transformation data between

multiple devices. Moreover, Bluetooth APIs support low energy and classic kinds. To

perform Bluetooth communication using these APIs. Bluetooth offers BluetoothMan-

ager "android.bluetooth.BluetoothManager" API which can be instance of :

• BluetoothAdapter: This API lets developer perform fundamental Bluetooth tasks,

such as initiate device discovery, query a list of bonded devices, instantiate a

BluetoothDevice , and create a BluetoothServerSocket to listen for connection

requests from other devices, and start a scan for Bluetooth low energy devices.

It can used getDefaultAdapter(), enable(), startLeScan(), startDiscovery(), get-

DefaultAdapter(), getbondeddevices() to acquire connection with Bluetooth re-

source. Also, stopLeScan(), cancelDiscovery(), closeProfileProxy() to released

connection.

• BluetoothDevice , BluetoothServerSocket or BluetoothSocket API use accept()

or close() to acquire/release connection to Bluetooth resource.

(1) Acquiring Bluetooth system recourse:

Using Bluetooth resource, a High level manager BluetoothManager API used to obtain

an instance of an BluetoothAdapter and to conduct overall Bluetooth Management

[47]. Apps must acquire/open Bluetooth resource inside onCreate() callback method.

For example, in case a developer uses an instance of the BluetoothAdapter API, the

BluetoothAdapter.getDefaultAdapter() method will be used as shown in the code bel-

low:

122

.

After analyzing 5577 Android activities, the percentages of acquiring Bluetooth sys-

tem’s resource result were obtained as shown in the following Table 5.27.

TABLE 5.27: Distribution of acquired Bluetooth system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (1) 20% (1) 20% (0) 0% (0) 0% (0) 0% (1) 20% (0) 0% (2) 40%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (1) 20% (0) 0% (1) 20% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.27 shows the distribution of the acquired Bluetooth across the app categories.

Each value represents the count and percentage of occurrence of the acquired Blue-

tooth over 5 existence of Bluetooth system’s resource inside 5577 activities. The result

was represented in bar chart in Figure 5.27.

123

FIGURE 5.27: Bar Chart: Distribution of acquired Bluetooth resource over the app categories

As shown in Figure 5.27, the Connectivity and Science & Education category are the

most frequent use for acquiring Bluetooth. However, in order to give our indication,

the average of wrongly acquired was competed to compare it with the correctly ac-

quired result as shown in Table 5.28.

TABLE 5.28: Distribution of correctly/wrongly acquired Bluetooth system’s resource

Category correctly acquired
Average of

wrongly acquired

Connectivity 20% on onCreate() 27%

Development 0% on onCreate() 0%

Games 0% on onCreate() 0%

Graphics 0% on onCreate() 0%

Internet 0% on onCreate() 0%

Money 0% on onCreate() 0%

Multimedia 0% on onCreate() 0%

Navigation 0% on onCreate() 0%

Phone & SMS 0% on onCreate() 0%

Reading 0% on onCreate() 0%

Science & Education 20% on onCreate() 20%

Security 0% on onCreate() 0%

Sports & Health 0% on onCreate() 0%

System 0% on onCreate() 0%

Theming 0% on onCreate() 0%

Time 0% on onCreate() 0%

Writing 0% on onCreate() 0%

Total Average 40% on onCreate() 47%

124

Table 5.28 was represented in Figure 5.28.

FIGURE 5.28: Column Chart: Distribution of correctly/wrongly acquired Bluetooth resource
over the app categories

The compared results in Figure 5.28 showed that:

• The percentage of correctly acquired on onCreate() callback method for the Blue-

tooth is 20% at Connectivity category, whereas the wrongly percentage is 27%.

• The percentage of correctly acquired on onCreate() callback method for the Blue-

tooth is 20% at Science & Education, whereas the wrongly percentage is also 20%.

• In the remaining categories, there are no occurrence for acquired Bluetooth re-

source.

• The total average of the correctly acquired percentages on onCreate() callback

method for the Bluetooth in all categories is 40%, whereas the total of the wrongly

acquired percentages is 47%.

(2) Releasing Bluetooth system’s resource:

Android apps which used an instance of BluetoothAdapter must be particularly care-

ful to release the Bluetooth object when the app stops using [47]. Developers use

onPause() callback method to close Bluetooth connection. For example, in case a de-

veloper uses an instance of the BluetoothAdapter API, the BluetoothAdapter.disable()

method will be used as shown in the code bellow:

125

After analyzing 5577 Android activities, the percentages of releasing Bluetooth sys-

tem’s resource result were obtained as shown in the following Table 5.29. Table 5.10

shows the distribution of the released Bluetooth across the app categories. Each value

represents the count and percentage of occurrence of the released Bluetooth over 5 ex-

istence of Bluetooth system’s resource inside 5577 activities. It shows that there are no

occurrence for released Bluetooth resource in all app categories.

TABLE 5.29: Distribution of released Bluetooth system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

126

5.2.2.4.7 Audio System’s Resource Audio resource is an API from Media frame-

work

"Android.media" [48]. It provides classes that manage various media interfaces in

Audio resource. The Media API was used to play or record Audio files. Using Au-

dioManager API "android.media.AudioManager" inside media framework let devel-

opers access to volume and ringer mode control. Developers use getSystemService(),

registerAudioDeviceCallback() or start() to acquire connection with Audio resource.

Also, they use stop(), release(), cancel() or unregisterAudioDeviceCallback() to re-

lease connection.

(1) Acquiring Audio system recourse:

Android apps which use an instance of AudioManager to create the Audio resource

object when the app starts using it [48]. Apps must acquire/open the Audio resource

inside onCreate() callback method. For example, in case a developer uses an in-

stance of the AudioManager API, the AudioManager.getSystemService() method will

be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquired percentages for Audio system’s

resource were obtained as shown in the following Table 5.30.

127

TABLE 5.30: Distribution of acquired Audio system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.30 shows the distribution of acquired Audio percentages across the app cate-

gories. Each value represents the count and percentage of occurrence of the acquired

Audio over 15 existence of Audio system’s resource inside 5577 activities. The result

shows that there are no occurrence for acquired Audio resource in the all app cate-

gories.

(2) Releasing Audio System’s Resource:

Android apps which used an instance of AudioManager resource must be particu-

larly careful to release the Audio object when the app stops using it [48]. This occurs

as soon as an app -activity- is paused , activity calls onPause() callback method. De-

velopers use onPause() callback method to close Audio resource. For example, in case

a developer uses an instance of the AudioManager API, the AudioManager.release()

method will be used as shown in the code bellow:

128

After analyzing 5577 Android activities, the released percentages for Audio system’s

resource result were obtained as shown in the following Table 5.31.

TABLE 5.31: Distribution of released Audio system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (3) 20% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 13%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (1) 7% (0) 0% (0) 0% (3) 20% (0) 0% (1) 7% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (2) 13% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (1) 7% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5.31 shows the distribution of the released Audio percentages across the app cat-

egories. Each value represents the count and percentage of occurrence of the released

Audio over 15 existence of Audio system’s resource inside 5577 activities. The result

was represented in Bar Chart at Figure 5.29.

129

FIGURE 5.29: Bar chart: Distribution of released Audio resource over the app categories

As shown in Figure 5.29, the Multimedia category is the most frequent use for releas-

ing Audio methods followed by Games. However, in order to give our indication,

the average of wrongly released was competed to compare it with correctly released

result as shown in Table 5.32.

TABLE 5.32: Distribution of correctly/wrongly released Audio system’s resource

Category Correctly released
Average of

wrongly released

Connectivity 0% on onPause() 0%

Development 0% on onPause() 0%

Games 0% on onPause() 17%

Graphics 0% on onPause() 0%

Internet 0% on onPause() 0%

Money 0% on onPause() 0%

Multimedia 20% on onPause() 7%

Navigation 0% on onPause() 0%

Phone & SMS 0% on onPause() 0%

Reading 0% on onPause() 0%

Science & Education 0% on onPause() 0%

Security 0% on onPause() 0%

Sports & Health 0% on onPause() 13%

System 0% on onPause() 0%

Theming 0% on onPause() 0%

Time 0% on onPause() 7%

Writing 0% on onPause() 0%

Total Average 20% on onPause() 43%

Table 5.32 was represented in Figure 5.30.

130

FIGURE 5.30: Column Chart: Distribution of correctly/wrongly released Audio resource over
the app Categories

The compared results as shown in Figure 5.30 shows that:

• The percentage of correctly released on onPause() callback method for the Audio

is 20% at Multimedia category, whereas the wrongly percentage is 7%.

• The percentages of wrongly released for the Audio are 17% at Games, 13% at

Sports & Health and 7% at Time categories, whereas there are no correctly re-

leased.

• In the remaining categories, there are no occurrence for released Audio resource.

• The total average of the correctly released percentages on onPause() callback

method for the Audio in all categories is 20%, whereas the total of the wrongly

released percentages is 43%.

5.2.2.4.8 Network System’s Resource Network system resource provide framework

callled "Network.Net" that helps with network access [49]. This framework offers

APIs such as ConnectivityManager

"android.net.ConnectivityManager" that shows network connectivity state. Also, when

connectivity changes, ConnectivityManager API notifies apps. Moreover, it Mon-

itors network connections and sends broadcast intents. ConnectivityManager API

131

uses registerDefaultNetworkCallbac() , requestNetwork() and registerNetworkCall-

back() methods to acquire connection with Network resource. Also, it uses getSys-

temService(), unregisterNetworkCallback() ,removeDefaultNetworkActiveListener()

,releaseNetworkRequest(), or release() to close connection. Developer also can use

NetworkRequest API to acquire/released connection with network resource.

(1) Acquiring Network system’s resource:

Android apps which use an instance of NetworkConectivity resource to create the

network object when the app starts using it [49]. Apps must acquire/open the Net-

work resource inside onCreate() callback method. For example, in case a developer

uses an instance of the ConnectivityManager API, the ConnectivityManager.getSystemService()

method will be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquiring Network system resource per-

centages result were obtained as shown in the following Table 5.33. Table 5.33 shows

the distribution of the acquired Network across the app categories. Each value rep-

resents the count and percentage of occurrence of the acquired Network over 13 ex-

istence of Network system resource inside 5577 activities. It shows that there are no

occurrence for acquired Network resource in the all app categories.

132

TABLE 5.33: Distribution of acquired Network system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

(2) Releasing Network system resource:

Android apps which used an instance of ConctvityManager resource must be par-

ticularly careful to release the network object when the app stops using it [49]. This

occurs as soon as an app -activity- is paused , activity calls onPause() callback method.

So, if Android apps does not properly release the network resource inside onPause()

may cause these to be shut down. For example, in case a developer uses an instance

of the ConectvityManager API, the ConectvityManager.release() method will be used

as shown in the code bellow:

133

After analyzing 5577 Android activities the releasing Network system’s resource per-

centages result were obtained as shown in the following Table 5.33. Table 5.33 shows

the distribution of the released network API across the categories. Each value rep-

resents the count and percentage of occurrence of the released Network over 13 ex-

istence of Network system resource inside 5577 activities. It shows that there are no

occurrence for released Network resource in the all app categories.

TABLE 5.34: Distribution of released Network system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

5.2.2.4.9 USB System’s Resource USB resource provides support to communicate

with USB hardware peripherals that are connected to Android devices [50]. Android

offers USB framework called "android.hardware.usb" to let developers access to USB

resource. Using UsbManager API

"android.hardware.usb.UsbManager" from USB framework helps to access the state

of the USB and to communicate with connected hardware peripherals. This API uses

134

openDevice() or openAccessory() methods to acquire connection with USB resource.

Whereas, it uses release() method to released connction. Moreover, Using UsbDevice

API

"android.hardware.usb.UsbDevice" from USB framework to communicate with the

hardware peripheral. This API uses openDevice() or releaseInterface() to acquire or

release Network resource.

(1) Acquiring USB system’s recourse:

Android apps uses an instance of UsbManager resource to create the USB object when

the app starts using it [50]. Apps must acquire/open the Network resource inside

onResume() callback method. For example, in case a developer uses an instance of

the UsbManager API, the

UsbManager.openDevice() method will be used as shown in the code bellow:

After analyzing 5577 Android activities, the acquiring USB system resource percent-

ages result were obtained as shown in the following Table 5.35. Table 5.35 shows

the distribution of the acquired USB across the app categories. Each value represents

the count and percentage of occurrence of the acquired Network over 19 existence of

USB system resource inside 5577 activities. It shows that there are no occurrence for

acquired USB resource in the all app categories.

135

TABLE 5.35: Distribution of acquired USB system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

(2) Releasing USB system’s resource:

Android apps which used an instance of USBManager resource must be particularly

careful to release the USB object when the app stops using it [50]. This occurs as soon

as an app -activity- is paused , activity calls onPause() callback method. For example,

in case a developer uses an instance of the USByManager, the USByManager.release()

method will be used as shown in the code bellow:

136

After analyzing 5577 Android activities, the releasing USB system resource percent-

ages result were obtained as shown in the following Table 5.35. Table 5.35 shows the

distribution of the released USB across the app categories. Each value represents the

count and percentage of occurrence of the released USB over 19 existence of USB sys-

tem’s resource inside 5577 activities. It shows that there are no occurrence for released

USB resource in the all app categories.

TABLE 5.36: Distribution of released USB system’s resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Connectivity (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Games (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Internet (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Money (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Multimedia (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Navigation (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Phone & SMS (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Reading (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Science & Education (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Security (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Sports & Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

System (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Time (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Writing (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

5.3 Nature of Code Implemented Inside Callback Meth-

ods

The third part of our analysis focuses on the nature of code inside the most important

callback methods which are the onPause(), onStop() and onDestroy(). This helps to

decide a heavy and long running code. However, in order to decode the long running

code, the suitable method is to compute the execution time for each method. But, this

137

might be very hard due to that our study use a static code analysis. What’s more, the

execution time has been influenced by the different mobile device fragmentation.

To solve this, the nature of code was considered according to main three actions.

So that, the nature of code was divided into three categories. The first is releasing

actions; the second is database actions; the third is threading actions. However, the

second and third categories were considered (database and threading actions) as a

long running and heavy code actions according to Android documentation site[17].

Each action was defined using some of the main keyword that developers might use

when they use these actions. Using SAALC, the analysis was applied depending on

these keywords of the categories for the onPause(), onStop() and onDestroy().

For example, to decide the nature of code, three categories were decided as:

• Category I: When the developer deal with releasing actions, some keywords

such as pause, close, release, remove keyword were used.

• Category II: When the developer deal with database actions, some keywords

such as sqlite data base or shared preferences were used.

• Category III: When the developer deal with threading actions, some keywords

such as runnable, thread and sleep keywords were used.

Note: In case of onPause() callback method, category I did not include in our anal-

ysis due to avoiding a conflict with the main usage of the nPause() callback method

to close and release connection, but the second and third categories(long running

code) were used only

The result of this part shown in Table 5.37.

138

TABLE 5.37: Nature of code analysis

Category Name onPause() onStop() onDestroy()

I Releasing Resources actions - (50) 15% (214) 27%

II Database actions (104) 12% (35) 10% (41) 5%

III Threading actions (43) 5% (8) 2% (45) 6%

Total (147) 17% (341) 27% (780) 38%

Table 5.37 shows the percentages of the nature of code inside the onPause(), onStop()

and onDestroy(). The results were also represented in Figure 5.31.

FIGURE 5.31: Nature of analysis

Figure 5.31 shows that:

• The total percentages for the nature of code inside inside the onPause() is (147)

17%. This includes the percentages of long running code (104) 12% for database

actions; and (43) 5% for threading actions.

• The total percentages for the nature of code inside the onStop() is (341) 27%. This

includes (50)15% for releasing actions; (43) 12% for long running code which

includes (35) 10% for database actions; and (8) 2% for threading actions.

139

• The total of percentages for the nature of code inside onDestroy() is (780) 38%.

This includes (214) 27% for releasing actions, (86) 11% for long running code

which includes (41) 5% for database actions; and (45) 6% for threading actions.

In the next chapter the result of this these was discussed and the research questions

were answered.

140

Chapter 6

Discussion

Development activity is not an easy process as it requires developers to have a better

understanding of their applications and on how users will use them [3, 9]. Devel-

opers also need to be aware of the common lifecycle practice of available for mobile

apps and correct the bad way of activity development. After analyzing several activi-

ties, researchers wanted to know whether Android developers correctly deal with the

activity’s lifecycle. So that, the set of research questions was answered to understand

the activity lifecycle practices commonly followed by Android developers.

This section provided a discussion of the results in terms of the proposed research

questions. It’s divided into three subsections, each of them gives the resulted argu-

ments and indications for each research question.

6.1 Utilizing Lifecycle Callback Methods

In the first part of our research, the usage of lifecycle in Android activities was consid-

ered to understand by analyzing whether developers use callback methods for their

activities. This leads us to our first research question:

141

RQ1: To what extent Android developers utilize the lifecycle callback methods in

developing mobile apps?.

Answering the RQ1 gives us the first indication about Android lifecycle callback

methods’ utilization. The results in section 5.1 show that onCreate() callback method

is the one that is mostly implemented (92%). This is not surprising since onCreate()

method is the main method to start and setup Android activities [17]. Implementing

the onCreate() callback method is important to initialize the UI of the activity as well

as other data binding operations. Moreover, developers use onCreate() method to do

all normal create views and setup.

The onResume() callback method is implemented by (23%). It is normally called

when the activity is in the foreground and about to start interacting with users’ in-

teractions[17]. Additionally, it is used for acquiring system resources among other

services by developers. Thus, the second indication can be assumed that such per-

centage of utilizing the onResume() method is reasonable due to the limited number

of activities that deal with managing system resources around 3% as shown in section

5.2 .

The onPause() callback method usage percentage is (16%) and is normally used when

an activity is about to go to the background [17]. More specifically, it is used to com-

mit unsaved changes, release system resources, stop animations and other processes

that can consume the CPU. This result can be concluded here that such usage per-

centage reasonable due to the same reasons as shown in the onResume().

On the other hand, the onRestart() callback method is rarely implemented (1%). The

onRestart() callback method is normally used after an activity has stopped and before

it is started again [17]. Additionally, it is used to acquire a raw cursor objects if de-

velopers have already deactivated it at onStop() method [17]. Accordingly, This gives

us the third indication, it can be assumed that the usage percentage of onRestart()

142

method (1%) is also reasonable since it has limited usage scenarios in case developers

create a cursor implementation object and required it on onRestart() callback method

instead they operate database query objects through managedQuery().

The onStart() and onStop() callback methods both have usage percentage of (6%). The

onStart() callback method is normally called when an activity is newly created and be-

coming visible to the user [17]. However, Google documentation does not provide a

clear description of when to use this method. Whereas, the onStop() callback method

is normally used to save app data to permanent storage and to execute long running

code[17]. According to [17], developers must execute long running code at onStop()

instead of onPause() method. This is due to the fact that onPause() method must be

executed quickly so that other activities can start seamlessly. From our perspective,

6% for onStart() and onStop() are reasonable percentages.

Additionally, the forth indication was reflected according to these two arguments.

The first is that Android developers might less understandable of onStart() or on-

Stop() method usage due to insufficient describing on Android documentation. And

the second, that developers understand the usage of them, but they seem less impor-

tant to use them. Both of these arguments give us the forth indication that Android

documentation needs to be more useful and give developer complete detail on how

to use Android callback methods.

The onDestroy() callback method has usage percentage of (14%). The onDestroy()

callback methods normally called before an activity is destroyed [17]. It acts as the

last chance for developers to free resources and threads that are associated with the

activity before it is removed from memory [17]. However, according to the study by

[8], the onStop() and onDestroy() methods may not be called by the system in cases

where the system is very low in resources (battery and memory). In such situation,

developers may face a dilemma. This is because both the onStop() and onDestroy()

143

methods are normally used to execute long running code. This will be had more

details in the discussion RQ3.

6.2 Utilizing Android System’s Resources

In second part of our research, the usage of system’s resource was considered to un-

derstand by analyzing activities source code and collecting statistics about main sys-

tem’s resources such as Camera and Bluetooth, GPS, sensors, etc. Utilizing system’s

resource showed us whether Android developers acquired and released the system’s

resource correctly as compared to Google documentation. So that’s lead to the second

research question is:

RQ2: Did Android developer correctly acquire and release the Android system

resources?.

The averages of correctly acquired and released of the previous nine resources are

equal to (23%) and (11%) respectively. However, the averages of wrongly acquired

and released resources of previous nine are (16%) and (8%) respectively. The result

was concluded here that a large percentage of system resources are not correctly re-

leased by the developers. As a consequence, according to study [9], this will lead to

incorrect behavior of the Android app, as well as memory leaks and runtime errors.

This result gives us three arguments. Firstly, developers are not might fully aware

of the importance of correctly managing the system resources. Secondly, develop-

ers possibly aware of the importance of correctly managing the system’s resources,

but they take it for granted. However, thirdly the main reference for developers to

learn how to manage the system resources is unclear and it’s hard to understand how

doing that using Android documentation. So, the indication here nears to the previ-

ous indication in RQ1 that Android documentation needs to be more complete and

144

clear enough useful information about managing system resources, because this will

influence the percentages of correctly/wrongly of acquired and released system’s re-

sources.

6.3 Utilizing Nature of Code Implemented inside Call-

back Methods

In the third part of our research, the nature of code inside callback methods was

analyzed. All activities were analyzed to collect what kind of code was implemented

inside onPause(), onStop() and onDestroy() callback methods. So, this question will

give us some statistics about how the developer uses these callback methods. And, if

they implemented a long running code or not.

RQ3: What is the nature of code implemented inside onPause(), onStop, and on-

Destroy() callback methods?.

Regarding the nature of code implemented inside the onPause(), onStop() and onDe-

stroy(), the result shows that the onStop() method has a (27%) nature of code includes

(12%)that is considered to be long running code. Further the onDestroy() method has

a (38%) includes (11%) of long running code. This is acceptable from the point of view

of the Android official documentation [17]. However, the problem here is that these

two methods may not be called according to the study by [8].

An the same time the developer cannot write a long running code inside the on-

Pause(). This is due to the fact that the onPause() should be executed quickly so that

other activities can be started [17]. Regarding the nature of code inside onPause()

call back method, it has a (17%) of code that is considered to be long running. This

is considered to be an issue as discussed above, since this will possibly block other

145

activities from running seamlessly.

In the next Chapter, the conclusion of our thesis was presented. Moreover, some

threats to validity, obstacles and future work were introduced.

146

Chapter 7

Conclusions

7.1 Conclusion

Android activity lifecycle model is very important to understand in order to develop

robust apps. With an ever-growing app community, activity lifecycle holds more im-

portance to ensure that apps are adequately reliable and robust. Our study is the

first study to explore the usage of activity’s lifecycle callback methods in the Android

development community. A tool called SAALC was built to analyze 5577 activities

residing in 842 Android apps from F-Droid repository. The activities were analyzed

to collect statistics about the utilization of each callback method; the averages of cor-

rect and wrong acquired/released system resources; and the nature of long running

process inside onPause(), onStop() and onDestroy() callback methods. Our findings

can be summarized as follows:

• The occurrence percentages of callback methods are about 1% of the activities

used onRestart() method, 6% used onStop(),23% used onResume(), 16% used

onPause() and 14% used onDestroy(). The most occurrences for onCreate() call-

back methods about 92% of activities.

147

• Only about 3% of the activities contain Camera, Audio, Bluetooth, Database,

GPS, Input, Network, Sensor and USB system’s resources.

• The wrongly acquired average of system’s resource is 16%, whereas the wrongly

released average is 8%. That’s will influence the app reliability.

• About 17% of activities used long running code inside onPause() callback meth-

ods and that will influence the app performance.

• About 27% of activities used releasing and long running code actions inside

onStop()callback method, whereas 38% used inside onDestroy() and there is no

guarantee to be called inside lifecycle.

These findings show that Android developers, in general, have limited knowledge

and awareness of the importance of writing an app that conforms to the lifecycle

model. Thus, this will affect apps’ reliability and performance. Further, the result was

argued that Android documentation needs to be more useful, complete and clear in

describing how developers will use activity callback method and system’s resources.

Android developers can use our findings to gain insights into Android apps devel-

opment. Moreover, software researchers can use our findings to provide support for

developers by extending more research in this fields, in order to help developers of

building more robust apps.

7.2 Difficulties and Obstacles

Due to that, this thesis is the first exploration, study about lifecycle conformance. It

was hard to gain proved result using reasonable benchmarks from previous studies.

However, the arguments and indications which founded in the discussion chapter

due to some facts related to lifecycle model and Android documentation.

148

7.3 Threat to validity

SAALC was developed to relate with most patterns and style of coding which devel-

opers may depend. However, Threats to internal validity considered the situations

and conditions under which experiments are implemented. These are some of the

Threats to internal validity was founded:

• Apps which contain system’s resource was automatically identified using im-

port package in .java file. Sometimes, activity files that used resources missed

due to the automatic process to search for the package names.

• The Java parser component was used from an online source without ensuring

its efficacy or testing it. However, it was used and tested before by Zein et al.

study [3].

• Fields name was decided according to the type of resources from the field’s list

inside .java file to check where the resource acquired and released inside the

file methods. However, Sometimes developers insert useless resource which

declared as a field and did not call any more. This will affect the count of the

occurrences results in our analysis.

• Sometimes the inheritance and casting characteristics of JAVA language allow a

developer to implement levels of sub child or different coding styles to acquire

or release resources. So, in these cases, it’s hard to decide if the resource was

acquired or released depending on the field type declaration.

• Sometimes developers released or acquired a resource more than one time in

the same methods. This condition was resolved by considering the frequency

of occurrence for acquired or released statement inside a method for one time

and did not compute all statements were found.

149

• Some of Internal threats occur when trying to decide a long ruining code inside

callback methods. A time execution of a static code was not calculated due

to that effect by the difference between mobiles fragmentation and hardware.

Instead, it was decided to use some actions that influenced a performance such

as using a database and threading.

SAALC was used to analyze over than 5000 Android activities. However, aware was

taken to threats to external validity, which considered to the generalizability of our

results. There are some of the Threats to external validity was founded due to the

reasons of over than 5000 Android activities was investigated from F-Droid, which

is one of the largest repositories of open source Android apps. Our dataset included

of many kinds of activities that’s had small ones to large from different categories.

However, it’s insufficient to if ours patterns findings would generalize to all Android

activities from different dataset. To overcome the external validity, in the future, more

activities from other datasets will be used.

7.4 Future Work

Our study is the first exploratory step to understand the activity lifecycle practices

in the app development community. In the future, our study will be expanded by

analyzing more apps from different platforms such as IOS and by adding mining

and analyzing techniques to our approach. Also, suitable benchmarks to measure

the correctness of lifecycle usage will be studied to prove our results and provide

meaningful indications about the best lifecycle conformance practices.

150

Appendix A

A.1 Repository information

TABLE A.1: Resources repository information from Android documentation [17]

Resources Package name
Name of

acquiring method
Name of

releasing method
Name of

acquired callback
Name of

released callback
open() release()

Camera startPreview() stopPreview()
open() release()

Camera2 startPreview() stopPreview()
CameraManager openCamera() release()

openCamera() close()

onResume() onPause()
Camera

CameraDevice onOpened() onClosed
openDevice()

UsbManager openAccessory() release()
USB

UsbDeviceConnection openDevice() releaseInterface()
onCreate() onPause()

registerListener() unregisterListener()
start()Sensor SensorManager
getsystemservice() stop() onResume() onPause()

openConnection() release()
registerDefaultNetworkCallback() unregisterNetworkCallback()Network
requestNetwork() releaseNetworkRequest()

ConnectivityManager registerNetworkCallback() removeDefaultNetworkActiveListener()
Network

NetworkRequest registerNetworkCallback() release()

onCreate() onPause()

registerInputDeviceListener() unregisterInputDeviceListener()
getsystemservice()Input InputManager
start() stop() onCreate() onPause()

stop()
getGpsStatus() release()GPS LocationManager
start() cancel()

onCreate() onPause()

SQLiteDatabase openOrCreateDatabase() close()
Context openOrCreateDatabase() close()

releaseMemory()
close()
releaseReference()

DataBase
SQLiteClosable openDatabase()

releaseReferenceFromContainer()

onCreate() onPause()

getDefaultAdapter() stopLeScan()
enable() cancelDiscovery()
startLeScan(0
startDiscovery()
getDefaultAdapter()

BluetoothAdapter

getbondeddevices()

closeProfileProxy()

BluetoothDevice() accept() close()
BluetoothServerSocket() accept() close()

close()
cancel()

Bluetooth

BluetoothSocket() accept()
release()

onCreate() onPause()

AudioRecord startRecording() stop()
Audio AudioManager startRecording() getsystemservice() onCreate() onPause()

151

A.2 Literature review studies

152

A.3 SAALC Class Diagram

FIGURE A.1: The class diagram for SAALC tool

References

[1] Anthony I Wasserman. “Software engineering issues for mobile appli-
cation development”. In: Proceedings of the FSE/SDP workshop on Future
of software engineering research. ACM. 2010, pp. 397–400.

[2] Josh Dehlinger and Jeremy Dixon. “Mobile application software engi-
neering: Challenges and research directions”. In: Workshop on Mobile
Software Engineering. Vol. 2. 2011, pp. 29–32.

[3] Samer Zein et al. “Static analysis of android apps for lifecycle confor-
mance”. In: Information Technology (ICIT), 2017 8th International Confer-
ence on. IEEE. 2017, pp. 102–109.

[4] Yash Lamba et al. “Pravaaha: Mining Android applications for dis-
covering API call usage patterns and trends”. In: Proceedings of the 8th
India Software Engineering Conference. ACM. 2015, pp. 10–19.

[5] App stores: number of apps in leading app stores 2017. 2017-05-21 15:38:32.
URL: https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/m
(visited on 2017).

[6] Samer Zein, Norsaremah Salleh, and John Grundy. “A systematic map-
ping study of mobile application testing techniques”. In: Journal of Sys-
tems and Software 117 (2016), pp. 334–356.

[7] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. “Real
challenges in mobile app development”. In: Empirical Software Engi-
neering and Measurement, 2013 ACM/IEEE International Symposium on.
IEEE. 2013, pp. 15–24.

[8] Dominik Franke et al. “Reverse engineering of mobile application life-
cycles”. In: Reverse Engineering (WCRE), 2011 18th Working Conference
on. IEEE. 2011, pp. 283–292.

[9] Dominik Franke et al. “Testing conformance of life cycle dependent
properties of mobile applications”. In: Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE. 2012,
pp. 241–250.

[10] Sebastiano Panichella et al. “Would static analysis tools help develop-
ers with code reviews?” In: Software Analysis, Evolution and Reengineer-
ing (SANER), 2015 IEEE 22nd International Conference on. IEEE. 2015,
pp. 161–170.

153

[11] Zhang Haotian and Liu Shu. “Java Source Code Static Check Eclipse
Plug-In Based on Common Design Pattern”. In: Software Engineering
(WCSE), 2013 Fourth World Congress on. IEEE. 2013, pp. 165–170.

[12] Phongphan Danphitsanuphan and Thanitta Suwantada. “Code smell
detecting tool and code smell-structure bug relationship”. In: Engi-
neering and Technology (S-CET), 2012 Spring Congress on. IEEE. 2012,
pp. 1–5.

[13] Shaheen Khatoon, Azhar Mahmood, and Guohui Li. “An evaluation
of source code mining techniques”. In: Fuzzy Systems and Knowledge
Discovery (FSKD), 2011 Eighth International Conference on. Vol. 3. IEEE.
2011, pp. 1929–1933.

[14] Alexander Ramos. Evaluating the ability of static code analysis tools to
detect injection vulnerabilities. 2016.

[15] Veelasha Moonsamy et al. “Mining permission patterns for contrast-
ing clean and malicious android applications”. In: Future Generation
Computer Systems 36 (2014), pp. 122–132.

[16] Suleiman Y Yerima et al. “A new android malware detection approach
using bayesian classification”. In: Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Conference on. IEEE.
2013, pp. 121–128.

[17] Activity | Android Developers. URL: https://developer.android.
com / reference / android / app / Activity . html (visited on
11/01/2017).

[18] Jill Jesson and Fiona Lacey. “How to do (or not to do) a critical litera-
ture review”. In: Pharmacy education 6 (2006).

[19] Data Mining vs. Statistics - How Are They Different? Dec. 2015. URL:
https://www.simplilearn.com/data-mining-vs-statistics-
article (visited on 09/10/2017).

[20] Aswini et al. “Droid permission miner: Mining prominent permis-
sions for Android malware analysis”. In: Applications of Digital Infor-
mation and Web Technologies (ICADIWT), 2014 Fifth International Confer-
ence on the. IEEE. 2014, pp. 81–86.

[21] Yousra Aafer et al. “Droidapiminer: Mining api-level features for ro-
bust malware detection in android”. In: International Conference on Se-
curity and Privacy in Communication Systems. Springer. 2013, pp. 86–
103.

[22] Md Yasser Karim et al. “Mining android apps to recommend per-
missions”. In: Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on. Vol. 1. IEEE. 2016, pp. 427–
437.

[23] Jianlin Xu et al. “MobSafe: cloud computing based forensic analysis
for massive mobile applications using data mining”. In: Tsinghua Sci-
ence and Technology 18.4 (2013), pp. 418–427.

154

[24] Matthew L Dering et al. “Android market reconstruction and anal-
ysis”. In: Military Communications Conference (MILCOM), 2014 IEEE.
IEEE. 2014, pp. 300–305.

[25] Aiman A Abu Samra et al. “Analysis of clustering technique in an-
droid malware detection”. In: Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2013 Seventh International Conference on.
IEEE. 2013, pp. 729–733.

[26] Clint Gibler et al. “AndroidLeaks: automatically detecting potential
privacy leaks in android applications on a large scale”. In: International
Conference on Trust and Trustworthy Computing. Springer. 2012, pp. 291–
307.

[27] Vitalii Avdiienko et al. “Mining apps for abnormal usage of sensi-
tive data”. In: Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press. 2015, pp. 426–436.

[28] Guillermo Suarez-Tangil et al. “Dendroid: A text mining approach to
analyzing and classifying code structures in android malware fami-
lies”. In: Expert Systems with Applications 41.4 (2014), pp. 1104–1117.

[29] Chao Yang et al. “Droidminer: Automated mining and characteriza-
tion of fine-grained malicious behaviors in android applications”. In:
European Symposium on Research in Computer Security. Springer. 2014,
pp. 163–182.

[30] Khalid Alharbi and Tom Yeh. “Collect, decompile, extract, stats, and
diff: Mining design pattern changes in Android apps”. In: Proceedings
of the 17th International Conference on Human-Computer Interaction with
Mobile Devices and Services. ACM. 2015, pp. 515–524.

[31] Eric Shaw et al. “Mining Android apps to predict market ratings”.
In: Mobile Computing, Applications and Services (MobiCASE), 2014 6th
International Conference on. IEEE. 2014, pp. 166–167.

[32] María Gómez et al. “Mining test repositories for automatic detection
of UI performance regressions in Android apps”. In: Proceedings of
the 13th International Conference on Mining Software Repositories. ACM.
2016, pp. 13–24.

[33] Mario Linares-Vásquez et al. “Mining android app usages for gen-
erating actionable gui-based execution scenarios”. In: Proceedings of
the 12th Working Conference on Mining Software Repositories. IEEE Press.
2015, pp. 111–122.

[34] Mario Linares-Vásquez et al. “Mining energy-greedy api usage pat-
terns in android apps: an empirical study”. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM. 2014, pp. 2–
11.

[35] Xuan Lu et al. “PRADA: Prioritizing android devices for apps by min-
ing large-scale usage data”. In: Proceedings of the 38th International Con-
ference on Software Engineering. ACM. 2016, pp. 3–13.

155

[36] F-Droid - Free and Open Source Android App Repository. URL: https:
//f-droid.org/ (visited on 11/05/2017).

[37] Daniele Simonin. FOSS applications statistics. Dec. 2016. URL: https:
//fossdroid.com/blog/foss-applications-statistics.
html (visited on 05/30/2017).

[38] A test automation tool. URL: http : / / sahipro . com/ (visited on
11/01/2017).

[39] Java parser. URL: https://github.com/javaparser/javaparser
(visited on 11/01/2017).

[40] Camera API | Android Developers. URL: https://developer.android.
com/guide/topics/media/camera.html (visited on 11/26/2017).

[41] android.database.sqlite | Android Developers. URL: https://developer.
android.com/reference/android/database/sqlite/package-
summary.html (visited on 11/26/2017).

[42] Database mangement and the Activity lifecycle. Mar. 2010. URL: https:
//awiden.wordpress.com/2010/03/26/database-mangement-
and-the-activity-lifecycle/ (visited on 11/26/2017).

[43] Sensors Overview | Android Developers. URL: https://developer.
android.com/guide/topics/sensors/sensors_overview.
html (visited on 11/27/2017).

[44] Making Your App Location-Aware | Android Developers. URL: https://
developer.android.com/training/location/index.html
(visited on 11/27/2017).

[45] LocationManager | Android Developers. URL: https://developer.
android.com/reference/android/location/LocationManager.
html (visited on 11/26/2017).

[46] InputManager | Android Developers. URL: https : / / developer .
android.com/reference/android/hardware/input/InputManager.
html (visited on 11/26/2017).

[47] BluetoothAdapter | Android Developers. URL: https://developer.
android.com/reference/android/bluetooth/BluetoothAdapter.
html (visited on 11/27/2017).

[48] AudioManager | Android Developers. URL: https://developer.
android.com/reference/android/media/AudioManager.
html (visited on 11/27/2017).

[49] ConnectivityManager | Android Developers. URL: https://developer.
android.com/reference/android/net/ConnectivityManager.
html (visited on 11/27/2017).

[50] android.hardware.usb | Android Developers. URL: https://developer.
android.com/reference/android/hardware/usb/package-
summary.html (visited on 11/27/2017).

156

